Установка для исследования пластовой нефти и газа. Установка исследования нефти


Установка для исследования пластовой нефти и газа

Изобретение относится к установкам для исследования нефти и может применяться, в частности, в установках для исследования свойств нефти и газа в пластовых условиях. Установка для исследования свойств нефти и газа в пластовых условиях включает поршневой контейнер с пробой, блок перевода пробы из поршневого контейнера в измерительный пресс, состоящий из двух поршневых насосов одинаковой производительности. Один из них подает пробу из поршневого контейнера, а второй опускает плавающий поршень в измерительном прессе. Измерительный пресс снабжен плавающим поршнем с полым штоком, ультразвуковым датчиком линейных перемещений для определения объема нефти и электронным датчиком линейных перемещений для определения объема газа. Циркуляционный поршневой насос обеспечивает однонаправленную циркуляцию нефти с регулируемой скоростью. Вискозиметр снабжен байпасом с запирающим клапаном. Единая термостатирующая емкость охватывает все элементы установки. Применение установки повышает точность определения объемов нефти и газа, а также вязкости нефти, сокращает время измерения характеристик проб в пластовых условиях, что в совокупности увеличивает эффективность работы установки. 1 ил.

 

Настоящее изобретение относится к установкам для исследования нефти и касается как конструкции отдельных частей таких установок, так и связей между ними, и может применяться, в частности, в установках для исследования свойств нефти и газа в пластовых условиях. Изобретение может быть использовано в нефтедобывающей отрасли, в том числе и на месторождениях, где повсеместно развит режим растворенного газа.

Известно устройство для исследования свойств нефти и газа в пластовых условиях (см. Н.А.Тривус и К.В.Виноградов. Исследование нефти и газа в пластовых условиях. Азнефтеиздат, 1955).

Недостатком этого устройства является применение ртути в качестве рабочей жидкости из-за высокой токсичности ртути, а также искажение результатов при исследовании сернистой нефти, вызываемых ртутью.

Наиболее близкой по технической сущности и достигаемому результату является установка для исследования пластовой нефти и газа УИПН-2, в которую входят поршневой контейнер с пробой, блок для перевода пробы из поршневого контейнера в измерительный пресс и циркуляционный насос, верхний и нижний манифольды, шариковый вискозиметр, система термостатирования (см. В.Н.Мамуна, Г.Ф.Требин, Б.В.Ульянинский «Экспериментальное исследование пластовых нефтей» ГОСИНТИ Москва, 1960, стр.40).

Блок для перевода пробы из поршневого контейнера в измерительный пресс и циркуляционный насос состоит из жидкостного регулируемого насоса с напорным бачком и промежуточной емкости.

Измерительный пресс установки состоит из цилиндра, поршня, перемещающегося внутри цилиндра от электромеханического привода, линейной неподвижной шкалы и вращающегося лимба, связанных с приводом, с помощью которых производят определение объема, занимаемого нефтью в измерительном прессе.

Циркуляционный насос для перемешивания пробы в измерительном прессе с целью установления фазового и термического равновесия выполнен в виде электромагнитного насоса. Циркуляционный электромагнитный насос установки состоит из немагнитного стального корпуса, в крышках которого имеются верхний и нижний штуцеры. Внутри корпуса находится железный сердечник с тарельчатым нагнетательным клапаном. На корпусе помещен соленоид, на который периодически (60 раз в минуту) подают напряжение постоянного тока. Возникающее при этом магнитное поле не поглощается немагнитным корпусом насоса и воздействует на железный сердечник-поршень, втягивая его вверх. В момент, когда напряжение не подают на соленоид, втягивающее магнитное поле снимается, и сердечник-поршень под силами собственного веса и возвратной пружины возвращается в нижнее положение. Под влиянием периодически возникающего магнитного поля и отталкивающей силы пружины поршень приобретает возвратно-поступательное движение. При ходе вверх под поршнем создается разрежение, открывается всасывающий клапан, и нефть через отверстие в нижнем штуцере поступает в цилиндр насоса. Одновременно поршень выталкивает через верхний штуцер поступившую ранее порцию нефти. Периодически двигаясь вверх и вниз, поршень производит перекачивание нефти из нижней части пресса в верхнюю часть.

Вискозиметр установки относится к типу приборов, в которых вязкость жидкой пробы определяют по времени качения шарика в наклонной трубке, заполненной исследуемой жидкостью.

Установка УИПН-2 имеет целый ряд недостатков: блок для перевода пробы имеет жидкостной регулируемый насос с ручной системой регулировки подачи, которую необходимо согласовывать с производительностью измерительного пресса и применять промежуточную емкость, заполненную маслом, смягчающую пульсирующую подачу жидкостного насоса, которая приводит к скачкам давления в поршневом контейнере и измерительном прессе; шариковый вискозиметр имеет тот недостаток, что любые примеси или любое сужение проходного сечения трубки вискозиметра приводят к «прихвату» шарика, в связи с чем возникают погрешности измерений; наличие циркуляционного электромагнитного насоса, у которого высокая и нерегулируемая скорость срабатывания сердечника-поршня приводит к тому, что нефть из нижней части пресса поступает в верхнюю часть пресса, при испытании заполненную газом в виде распыленного облака нефти, которая при этом дополнительно насыщается газом, что замедляет установление равновесия в системе нефть-газ и снижает точность измерений; конструкция измерительного пресса не позволяет определять объем газа внутри измерительного пресса; раздельное термостатирование измерительного пресса и вискозиметра может приводить к расхождению температуры пробы в них.

Таким образом, основным недостатком функционирования установки УИПН-2 является необходимость ручного согласования подачи жидкостного насоса и производительности измерительного пресса при переводе пробы; ненадежность работы шарикового вискозиметра; неэффективная работа циркуляционного насоса; невозможность автоматизации измерений и соответственно их компьютерного отображения в режиме реального времени.

Таким образом, перечисленные недостатки функционирования установки УИПН-2 снижают точность определения измеряемых характеристик проб в пластовых условиях.

Предметом заявляемого изобретения является установка для исследования свойств нефти и газа в пластовых условиях, которая способна повысить точность определения измеряемых характеристик проб в пластовых условиях.

Поставленная задача решается тем, что в установке для исследования свойств нефти и газа в пластовых условиях, включающей поршневой контейнер с пробой, снабженный верхним вентилем и нижним вентилем, блок перевода пробы из поршневого контейнера в измерительный пресс, который содержит цилиндр с отверстием в верхнем основании цилиндра для заполнения его пробой, поршень, перемещающийся внутри цилиндра, датчик давления, датчик линейных перемещений поршня, циркуляционный насос, вискозиметр, вакуумный насос, систему термостатирования, согласно изобретению на нижний вентиль поршневого контейнера с пробой своим выходным отверстием установлен программно-управляемый многопозиционный пневматический клапан, а верхний вентиль соединен с вентилем вакуумного насоса и с вентилем измерительного пресса, блок перевода пробы из поршневого контейнера включает сосуд с рабочей жидкостью, систему из двух поршневых насосов, каждый из которых снабжен датчиком давления, программно-управляемым многопозиционным пневматическим клапаном, приводом, блоком импульсного управления, причем каждый поршневой насос и его датчик давления подсоединен к входному отверстию соответствующего программно-управляемого многопозиционного пневматического клапана, сосуд с рабочей жидкостью соединен с одним из выходных отверстий программно-управляемого многопозиционного пневматического клапана каждого из насосов системы, другое выходное отверстие программно-управляемого многопозиционного пневматического клапана одного из насосов подсоединено к входному отверстию программно-управляемого многопозиционного пневматического клапана нижнего вентиля поршневого контейнера, а другое выходное отверстие программно-управляемого многопозиционного пневматического клапана другого насоса подсоединено к выходному отверстию программно-управляемого многопозиционного пневматического клапана нижнего вентиля поршневого контейнера и одновременно соединено с отверстием в нижнем основании цилиндра измерительного пресса; измерительный пресс выполнен в виде цилиндра с плавающим поршнем, снабженным ультразвуковым датчиком линейных перемещений, гибкая проводная связь которого герметично выведена через нижнее основание цилиндра наружу, и уплотнительным кольцом, герметизирующем поршень и образующим в полости цилиндра верхнюю и нижнюю камеры, при этом отверстие в верхнем основании цилиндра соединено с датчиком давления и с входным отверстием программно-управляемого многопозиционного пневматического клапана, одно из выходных отверстий которого соединено с вискозиметром, а другое выходное отверстие соединено с поршневым контейнером, плавающий поршень соединен с полым штоком, герметично выведенным наружу через нижнее основание цилиндра, где полый шток соосно соединен с измерительным штоком через тройник компенсатора, который снабжен вентилем, причем измерительный шток другим концом присоединен к датчику линейных перемещений, выполненному в виде электронного индикатора; циркуляционный насос включает поршневой насос, привод, блок импульсного управления, обеспечивая однонаправленную циркуляцию нефти с регулируемой скоростью, причем цилиндр поршневого насоса разделен поршнем на две полости, каждая из которых снабжена программно-управляемым многопозиционным пневматическим клапаном, подсоединенным через входное отверстие, а одно из выходных отверстий каждого из программно-управляемых многопозиционных пневматических клапанов соединено с вискозиметром, другое выходное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов соединено через вентиль компенсатора с измерительным прессом; вискозиметр выполнен в виде блока, который включает капилляр, дифференциальный манометр, программно-управляемый одинарный пневматический клапан, систему из двух тройников, систему из двух программно-управляемых многопозиционных пневматических клапанов, причем одно из выходных отверстий каждого из программно-управляемых многопозиционных пневматических клапанов соединено с дифференциальным манометром, а другое выходное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов подсоединено к одному из концов капилляра; входное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов подсоединено через тройник к байпасу с запирающим программно-управляемым одинарным пневматическим клапаном, при этом один из тройников соединен с выходным отверстием программно-управляемого многопозиционного пневматического клапана измерительного пресса, а другой тройник соединен с циркуляционным насосом; система термостатирования выполнена в виде единой термостатируемой емкости, в которой расположены все элементы установки.

Такие элементы заявляемой установки, как тройники и программно-управляемые многопозиционные пневматические клапаны, сами по себе являются известными, но их расположение, обеспечивающее связь между элементами установки, является новым. Применение системы насосов одинаковой производительности для подачи пробы из поршневого контейнера и для опускания плавающего поршня в измерительном прессе позволяет исключить какие-либо скачки давления. Такие элементы измерительного пресса заявляемой установки, как плавающий поршень, полый шток, ультразвуковой датчик линейных перемещений, электронный индикатор линейных перемещений, также сами по себе являются известными. Но новой является совокупность существенных признаков конструкции: плавающий поршень с уплотнительным кольцом, который разделяет цилиндр на две камеры, наличие ультразвукового датчика в плавающем поршне, связь плавающего поршня с электронным индикатором линейных перемещений через измерительный шток и полый шток, который через компенсатор подсоединен к системе циркуляции нефти. В результате возникает возможность плавно перейти от давления, равного пластовому в обеих камерах измерительного пресса, к понижению давления в верхней камере до давления насыщения, что позволяет одновременно определять точный объем как газа, так и нефти. Использование в заявляемой установке двуполостного поршневого циркуляционного насоса, снабженного блоком импульсного управления и программно-управляемыми многопозиционными пневматическими клапанами, соединенными с капилляром вискозиметра, снабженного тройниками и байпасом с программно-управляемым однопозиционными пневматическим клапаном и двумя программно-управляемыми многопозиционными пневматическими клапанами, является новым и позволяет установке работать в двух режимах: в режиме однонаправленной непрерывной циркуляции нефти и в режиме подачи нефти при измерении вязкости.

Совокупность перечисленных новых существенных признаков изобретения неожиданно позволяет производить смену режимов работы установки в любой момент времени при любых давлениях и температуре при сохранении высокой точности определения измеряемых параметров.

Особенности и преимущества настоящего изобретения поясняет чертеж.

На чертеже изображена схема установки для исследования нефти и газа в пластовых условиях, поясняющая принцип действия установки.

Установка для исследования нефти и газа в пластовых условиях содержит следующие элементы: поршневой контейнер 1, разделительный поршень 2, камеру для пробы 3 с верхним вентилем 4 и камеру для рабочей жидкости 5 с нижним вентилем 6, соединенным с многопозиционным пневматическим клапаном 7. Блок перевода пробы из поршневого контейнера 1 включает систему из двух поршневых насосов 8 и 9 соответственно с приводами 10, 11 и импульсными блоками управления 12, 13, датчики давления насосов 14 и 15, многопозиционные пневматические клапаны 16 и 17, сосуд с рабочей жидкостью 18. Датчик давления 14 подсоединен к входному отверстию 19 программно-управляемого многопозиционного пневматического клапана 16, а датчик давления 15 подсоединен к входному отверстию 20 программно-управляемого многопозиционного пневматического клапана 17, выходное отверстие 21 программно-управляемого многопозиционного пневматического клапана 16 соединено с сосудом с рабочей жидкостью 18, а выходное отверстие 22 программно-управляемого многопозиционного пневматического клапана 16 соединено с сосудом с рабочей жидкостью 18, выходное отверстие 23 программно-управляемого многопозиционного пневматического клапана 16 подсоединено к входному отверстию 24 программно-управляемого многопозиционного пневматического клапана 7, а выходное отверстие 25 программно-управляемого многопозиционного пневматического клапана 17 соединено с отверстием 26 нижнего основания 27 цилиндра измерительного пресса и одновременно соединено с выходным отверстием 28 многопозиционного пневматического клапана 7, боковое отверстие 29 которого подсоединено через вентиль 6 к камере с рабочей жидкостью 5 поршневого контейнера с пробой 1.

Измерительный пресс включает цилиндр 30, верхнее основание 31 с отверстием 32 для заполнения цилиндра пробой, соединенное с датчиком давления 34 и входным отверстием 35 программно-управляемого многопозиционного пневматического клапана 36, который через выходное отверстие 37 соединен с вискозиметром, а через выходное отверстие 38 с вентилем 39, который подсоединен к вентилю 4 поршневого контейнера 1 и к вентилю 40 вакуумного насоса 41; нижнюю камеру 42, плавающий поршень 43, ультразвуковой датчик 44 линейных перемещений с гибкой проводной связью 45, полый шток 46, измерительный шток 47, электронный индикатор 48 линейных перемещений, компенсатор 49, снабженный вентилем 50, соединенным с выходными отверстиями 51 и 52 программно-управляемых трехпозиционных пневматических клапанов 53 и 54 циркуляционного насоса.

Циркуляционный насос включает поршневой насос 55, привод 56 с блоком импульсного управления 57, поршень 58, полости 59 и 60, программно-управляемые многопозиционные пневматические клапаны 53 и 54, входные отверстия 61 и 62 которых соединены с полостями 59, 60, а выходные отверстия 63 и 64 программно-управляемых многопозиционных пневматических клапанов 53, 54 соединены с вискозиметром.

Вискозиметр включает капилляр 65, дифференциальный манометр 66, систему из двух программно-управляемых многопозиционных пневматических клапанов 67 и 68, байпас с запирающим программно-управляемым одинарным пневматическим клапаном 69, тройники 70 и 71, причем выходные отверстия 72 и 73 программно-управляемых многопозиционных пневматических клапанов 67 и 68 замкнуты на дифференциальный манометр 66, а выходные отверстия 74 и 75 программно-управляемых многопозиционных пневматических клапанов 67 и 68 подсоединены к концам капилляра 65, входные отверстия 76, 77 программно-управляемых многопозиционных пневматических клапанов 67, 68 соединены с тройниками 70 и 71 соответственно. При этом один из выходов тройника 70 через байпас с программно-управляемым одинарным пневматическим клапаном 69 замнут на выход тройника 71, а второй выход тройника 70 соединен с выходным отверстием 37 программно-управляемого многопозиционного пневматического клапана 36 измерительного пресса, а второй выход тройника 71 соединен с выходным отверстием 63 программно-управляемого многопозиционного пневматического клапана 53 и с выходным отверстием 64 программно-управляемого многопозиционного пневматического клапана 54 циркуляционного насоса. Единая термостатирующая система 78 охватывает все элементы установки.

Установка работает следующим образом.

Вначале подготавливают измерительный пресс к заполнению цилиндра исследуемой пробой, обеспечивая работу насоса 8 и насоса 9 в противофазе. Перед запуском насосов 8 и 9 отверстия 21, 25, 29 закрывают, а отверстия 23, 22, 28 открывают. Одновременно включают насосы 8 и 9, при этом насос 8 закачивает рабочую жидкость в камеру 42 измерительного пресса, а насос 9 засасывает рабочую жидкость в себя, затем одновременно останавливают плунжер насоса 8 в крайнем верхнем положении, а плунжер насоса 9 - в крайнем нижнем положении. В остановленном состоянии отверстие 21 открывают, а отверстия 23 и 22 закрывают. Оставляя отверстия 28 и 29 клапана 7 в прежнем положении, когда отверстие 28 открыто, а 29 закрыто, реверсируют работу насоса 8 и набирают в него рабочую жидкость из емкости 18, одновременно реверсируют работу насоса 9 и закачивают рабочую жидкость в камеру 42 измерительного пресса. В таком режиме работу насосов 8 и 9 осуществляют до тех пор, пока плавающий поршень 43 измерительного пресса не упрется в верхнее основание 31, а давление в камере 42 превысит давление в поршневом контейнере 1, чтобы исключить неконтролируемый выброс пробы при открытии вентиля 4, прекратив работу насоса 9 в верхнем положении его плунжера, а работу насоса 8 в промежуточном положении его плунжера. После этого закрывают отверстия 25 и 28, сохраняя избыточное давление в камере 42.

Открывают отверстия 38, 37, 72, 73, 74, 75, 69, 64, 52, 63, 51, вентили 39, 40, 50 и откачивают воздух вакуумным насосом 41, после чего закрывают вентиль 40.

Для перевода пробы из поршневого контейнера 1 в измерительный пресс и циркуляционный насос насос 8 используют для подкачки рабочей жидкости в камеру 5, а насос 9 для откачки рабочей жидкости из нижней камеры 42 в равных объемах.

Первоначально заполняют мертвый объем измерительного пресса и циркуляционного насоса следующим образом. Закрывают отверстия 22, 23 открывают отверстие 21 и, включив насос 8, опускают его плунжер и добирают в насос 8 рабочую жидкость из сосуда 18, после чего отверстие 21 закрывают, открывают отверстия 23, 29, вентиль 6 и вентиль 4, и, поднимая плунжер насоса 8, выдавливают рабочую жидкость в нижнюю камеру 5 поршневого контейнера, останавливают насос 8, закрывают отверстия 23, 29, открывают отверстие 21 и, включив насос 8, повторяют цикл закачки рабочей жидкости в камеру 5 до момента полного заполнения мертвого объема.

С момента заполнения мертвого объема измерительного пресса и циркуляционного насоса и достижения в нем пластового давления производят набор заданного объема пробы в измерительный пресс. Для этого, когда плунжер насоса 8 выдавливает рабочую жидкость в нижнюю камеру 5, включают в работу насос 9, закрыв выходное отверстие 22 клапана 17 и открыв отверстие 25, и опускают плунжер насоса 9 с той же скоростью, с какой поднимают плунжер 8. При достижении плунжером насоса 8 крайнего верхнего положения насосы 8 и 9 останавливают. Отверстие 23 закрывают, отверстие 21 открывают, закрывают отверстие 25, открывают отверстие 22, включают насосы 8 и 9 и, поднимая плунжер насоса 9, выталкивают рабочую жидкость в сосуд 18. Одновременно, используя насос 8, закачивают в него рабочую жидкость из сосуда 18.

При достижении плунжером насоса 8 крайнего нижнего положения, а плунжером насоса 9 крайнего верхнего положения насосы 8 и 9 останавливают. Закрывают отверстия 21, открывают отверстие 23 и 29, закрывают отверстие 22, открывают отверстие 25 и, включив насосы 8 и 9, повторяют цикл закачки рабочей жидкости в камеру 5 и откачки рабочей жидкости из камеры 42. При этом происходит поступление пробы из камеры 3 в верхнюю камеру 33 при сохранении пластового давления.

Объем нефти в верхней камере 33 определяют по показаниям электронного индикатора 48 линейных перемещений. Работу насосов 8 и 9 продолжают до тех пор, пока не закачают требуемой объем нефти в верхнюю камеру 33. После закачки в верхнюю камеру 33 необходимого для исследования объема пробы закрывают вентиль 39 и отверстие 38. Затем включают циркуляционный насос. Запуск циркуляционного насоса производят в следующем порядке.

Отверстия 52, 63, 74 и 75 закрывают. Привод 56 с блоком импульсного управления 57 включают таким образом, что поршень 58 перемещают вверх, при этом пробу из полости 60 подают в верхнюю камеру 33. Одновременно через полый шток 46 и ранее открытые вентиль 50 и отверстие 51 заполняют пробой полость 59. При достижении поршнем 58 верхнего положения привод 56 блоком импульсного управления 57 останавливают, открывают отверстия 52 и 63, закрывают отверстия 51 и 64 и реверсируют привод 56 блоком импульсного управления 57, при этом пробу из полости 59 подают в верхнюю камеру 33, а полость 60 заполняют пробой через полый шток 46.

При этом направление циркуляции пробы через измерительный пресс остается неизменным.

Для определения величины давления насыщения насосом 9 при непрерывно работающем циркуляционном насосе откачивают рабочую жидкость в камере 42 до тех пор, пока в верхней камере 33 не начнется выделение газа из нефти, что будет заметно по замедлению темпа падения давления. Давление насыщения будет соответствовать точке перегиба на графике зависимости изменения величины давления от объема нефти, получаемом в режиме реального времени по показаниям датчика давления 34 и электронного индикатора 48 линейных перемещений.

Для установления зависимости между давлением и количеством растворенного в нефти газа давление в камере 42 медленно снижают до давления, которое меньше давления насыщения, достигая в каждый момент времени равновесия системы нефть - газ в верхней камере 33. При этом ультразвуковым датчиком 44 линейных перемещений фиксируют расстояние от верхней горизонтальной плоскости поршня 43 до границы раздела газа и нефти, что позволяет определить объем нефти, а объем газа рассчитывают как разность полного объема верхней камеры 33, определяемую с помощью электронного индикатора 48 линейных перемещений, и объема нефти, определяемого с помощью ультразвукового датчика 44 линейных перемещений.

Таким образом, использование заявляемого измерительного пресса повышает точность измерений объемов нефти и газа и дополнительно позволяет получать непрерывные графические зависимости давления от объема как для нефти, так и для газа.

Для измерения вязкости пробы однопозиционный клапан 69 закрывают. Скорость движения поршня 58 приводят в соответствие с пропускной способностью капилляра 65 и диапазоном давлений, измеряемых дифференциальным манометром 66. На основании того, что линейное перемещение поршня 58 прямо пропорционально количеству импульсов, подаваемых с блока импульсного управления 57, автоматически подсчитывают объем жидкости, прокаченной через капилляр, а дифференциальным манометром 66 при этом измеряют перепад давления. Так как при движении поршня 58 в измерительный пресс подают такой же объем пробы из полости 60, какой отбирают из него в полость 59, то пульсации давления на концах капилляра вискозиметра при работе циркуляционного насоса не возникает, что упрощает и повышает точность измерения вязкости.

При этом динамическую вязкость нефти при заданной температуре термостатирования и давлении, заданном в измерительном прессе, рассчитывают по формуле Пуазейля

где η - динамическая вязкость нефти, Па·с;

Q - объемная скорость, м3/с;

d - диаметр канала капилляра, м;

Δp - потеря давления на длине капилляра, Па;

L - длина канала капилляра, м.

При необходимости, кинематическая вязкость нефти при температуре термостатирования и давлении, заданном в измерительном прессе, рассчитывают по формуле

ν=η/ρ,

где ν - кинематическая вязкость нефти, м2/с;

ρ - плотность пробы, кг/м3.

Таким образом, применение заявляемой установки для исследования свойств нефти и газа в пластовых условиях повышает точность определения объемов нефти и газа, а также вязкости нефти.

Дополнительным преимуществом заявляемого изобретения является сокращение времени измерения характеристик проб в пластовых условиях, что в совокупности с повышением точности измерений увеличивает эффективность промышленного применения заявляемой установки.

Установка для исследования свойств нефти и газа в пластовых условиях, включающая поршневой контейнер с пробой, снабженный верхним вентилем и нижним вентилем, блок перевода пробы из поршневого контейнера в измерительный пресс, который содержит цилиндр с отверстием в верхнем основании цилиндра для заполнения его пробой, поршень, перемещающийся внутри цилиндра, датчик давления, датчик линейных перемещений поршня, циркуляционный насос, вискозиметр, вакуумный насос, систему термостатирования, отличающаяся тем, что на нижний вентиль поршневого контейнера с пробой своим выходным отверстием установлен программно-управляемый многопозиционный пневматический клапан, а верхний вентиль соединен с вентилем вакуумного насоса и с вентилем измерительного пресса, блок перевода пробы из поршневого контейнера включает сосуд с рабочей жидкостью, систему из двух поршневых насосов, каждый из которых снабжен датчиком давления, программно-управляемым многопозиционным пневматическим клапаном, приводом, блоком импульсного управления, причем каждый поршневой насос и его датчик давления подсоединен к входному отверстию соответствующего программно-управляемого многопозиционного пневматического клапана, сосуд с рабочей жидкостью соединен с выходным отверстием программно-управляемого многопозиционного пневматического клапана каждого насоса, другое выходное отверстие программно-управляемого многопозиционного пневматического клапана одного из насосов подсоединено к входному отверстию программно-управляемого многопозиционного пневматического клапана нижнего вентиля поршневого контейнера, а другое выходное отверстие программно-управляемого многопозиционного пневматического клапана другого насоса подсоединено к выходному отверстию программно-управляемого многопозиционного пневматического клапана нижнего вентиля поршневого контейнера, и одновременно соединено с отверстием в нижнем основании цилиндра измерительного пресса; измерительный пресс выполнен в виде цилиндра с плавающим поршнем, снабженным ультразвуковым датчиком линейных перемещений, гибкая проводная связь которого герметично выведена через нижнее основание цилиндра наружу, и уплотнительным кольцом, герметизирующем поршень, образуя в полости цилиндра верхнюю и нижнюю камеры, при этом отверстие в верхнем основании цилиндра соединено с датчиком давления и с входным отверстием программно-управляемого многопозиционного пневматического клапана, одно из выходных отверстий которого соединено с вискозиметром, а другое выходное отверстие соединено с поршневым контейнером, плавающий поршень соединен с полым штоком, герметично выведенным наружу через нижнее основание цилиндра, где полый шток соосно соединен с измерительным штоком через тройник компенсатора, который снабжен вентилем, причем измерительный шток другим концом присоединен к датчику линейных перемещений, выполненному в виде электронного индикатора; циркуляционный насос включает поршневой насос, привод, блок импульсного управления, обеспечивая однонаправленную циркуляцию нефти с регулируемой скоростью, причем цилиндр насоса разделен поршнем на две полости, каждая из которых снабжена программно-управляемым многопозиционным пневматическим клапаном, подсоединенным через входное отверстие, а одно из выходных отверстий каждого из программно-управляемых многопозиционных пневматических клапанов соединено с вискозиметром, другое выходное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов соединено через вентиль компенсатора с измерительным прессом; вискозиметр выполнен в виде блока, который включает капилляр, дифференциальный манометр, программно-управляемый одинарный пневматический клапан, систему из двух тройников, систему из двух программно-управляемых многопозиционных пневматических клапанов, причем одно из выходных отверстий каждого из программно-управляемых многопозиционных пневматических клапанов соединено с дифференциальным манометром, а другое выходное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов подсоединено к одному из концов капилляра; входное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов подсоединено через тройник к байпасу с запирающим программно-управляемым одинарным пневматическим клапаном, причем один из тройников соединен с выходным отверстием программно-управляемого многопозиционного пневматического клапана измерительного пресса, а другой тройник соединен с циркуляционным насосом; система термостатирования выполнена в виде единой термостатируемой емкости.

www.findpatent.ru

установка для исследования пластовой нефти и газа - патент РФ 2310072

Изобретение относится к установкам для исследования нефти и может применяться, в частности, в установках для исследования свойств нефти и газа в пластовых условиях. Установка для исследования свойств нефти и газа в пластовых условиях включает поршневой контейнер с пробой, блок перевода пробы из поршневого контейнера в измерительный пресс, состоящий из двух поршневых насосов одинаковой производительности. Один из них подает пробу из поршневого контейнера, а второй опускает плавающий поршень в измерительном прессе. Измерительный пресс снабжен плавающим поршнем с полым штоком, ультразвуковым датчиком линейных перемещений для определения объема нефти и электронным датчиком линейных перемещений для определения объема газа. Циркуляционный поршневой насос обеспечивает однонаправленную циркуляцию нефти с регулируемой скоростью. Вискозиметр снабжен байпасом с запирающим клапаном. Единая термостатирующая емкость охватывает все элементы установки. Применение установки повышает точность определения объемов нефти и газа, а также вязкости нефти, сокращает время измерения характеристик проб в пластовых условиях, что в совокупности увеличивает эффективность работы установки. 1 ил.

Рисунки к патенту РФ 2310072

Настоящее изобретение относится к установкам для исследования нефти и касается как конструкции отдельных частей таких установок, так и связей между ними, и может применяться, в частности, в установках для исследования свойств нефти и газа в пластовых условиях. Изобретение может быть использовано в нефтедобывающей отрасли, в том числе и на месторождениях, где повсеместно развит режим растворенного газа.

Известно устройство для исследования свойств нефти и газа в пластовых условиях (см. Н.А.Тривус и К.В.Виноградов. Исследование нефти и газа в пластовых условиях. Азнефтеиздат, 1955).

Недостатком этого устройства является применение ртути в качестве рабочей жидкости из-за высокой токсичности ртути, а также искажение результатов при исследовании сернистой нефти, вызываемых ртутью.

Наиболее близкой по технической сущности и достигаемому результату является установка для исследования пластовой нефти и газа УИПН-2, в которую входят поршневой контейнер с пробой, блок для перевода пробы из поршневого контейнера в измерительный пресс и циркуляционный насос, верхний и нижний манифольды, шариковый вискозиметр, система термостатирования (см. В.Н.Мамуна, Г.Ф.Требин, Б.В.Ульянинский «Экспериментальное исследование пластовых нефтей» ГОСИНТИ Москва, 1960, стр.40).

Блок для перевода пробы из поршневого контейнера в измерительный пресс и циркуляционный насос состоит из жидкостного регулируемого насоса с напорным бачком и промежуточной емкости.

Измерительный пресс установки состоит из цилиндра, поршня, перемещающегося внутри цилиндра от электромеханического привода, линейной неподвижной шкалы и вращающегося лимба, связанных с приводом, с помощью которых производят определение объема, занимаемого нефтью в измерительном прессе.

Циркуляционный насос для перемешивания пробы в измерительном прессе с целью установления фазового и термического равновесия выполнен в виде электромагнитного насоса. Циркуляционный электромагнитный насос установки состоит из немагнитного стального корпуса, в крышках которого имеются верхний и нижний штуцеры. Внутри корпуса находится железный сердечник с тарельчатым нагнетательным клапаном. На корпусе помещен соленоид, на который периодически (60 раз в минуту) подают напряжение постоянного тока. Возникающее при этом магнитное поле не поглощается немагнитным корпусом насоса и воздействует на железный сердечник-поршень, втягивая его вверх. В момент, когда напряжение не подают на соленоид, втягивающее магнитное поле снимается, и сердечник-поршень под силами собственного веса и возвратной пружины возвращается в нижнее положение. Под влиянием периодически возникающего магнитного поля и отталкивающей силы пружины поршень приобретает возвратно-поступательное движение. При ходе вверх под поршнем создается разрежение, открывается всасывающий клапан, и нефть через отверстие в нижнем штуцере поступает в цилиндр насоса. Одновременно поршень выталкивает через верхний штуцер поступившую ранее порцию нефти. Периодически двигаясь вверх и вниз, поршень производит перекачивание нефти из нижней части пресса в верхнюю часть.

Вискозиметр установки относится к типу приборов, в которых вязкость жидкой пробы определяют по времени качения шарика в наклонной трубке, заполненной исследуемой жидкостью.

Установка УИПН-2 имеет целый ряд недостатков: блок для перевода пробы имеет жидкостной регулируемый насос с ручной системой регулировки подачи, которую необходимо согласовывать с производительностью измерительного пресса и применять промежуточную емкость, заполненную маслом, смягчающую пульсирующую подачу жидкостного насоса, которая приводит к скачкам давления в поршневом контейнере и измерительном прессе; шариковый вискозиметр имеет тот недостаток, что любые примеси или любое сужение проходного сечения трубки вискозиметра приводят к «прихвату» шарика, в связи с чем возникают погрешности измерений; наличие циркуляционного электромагнитного насоса, у которого высокая и нерегулируемая скорость срабатывания сердечника-поршня приводит к тому, что нефть из нижней части пресса поступает в верхнюю часть пресса, при испытании заполненную газом в виде распыленного облака нефти, которая при этом дополнительно насыщается газом, что замедляет установление равновесия в системе нефть-газ и снижает точность измерений; конструкция измерительного пресса не позволяет определять объем газа внутри измерительного пресса; раздельное термостатирование измерительного пресса и вискозиметра может приводить к расхождению температуры пробы в них.

Таким образом, основным недостатком функционирования установки УИПН-2 является необходимость ручного согласования подачи жидкостного насоса и производительности измерительного пресса при переводе пробы; ненадежность работы шарикового вискозиметра; неэффективная работа циркуляционного насоса; невозможность автоматизации измерений и соответственно их компьютерного отображения в режиме реального времени.

Таким образом, перечисленные недостатки функционирования установки УИПН-2 снижают точность определения измеряемых характеристик проб в пластовых условиях.

Предметом заявляемого изобретения является установка для исследования свойств нефти и газа в пластовых условиях, которая способна повысить точность определения измеряемых характеристик проб в пластовых условиях.

Поставленная задача решается тем, что в установке для исследования свойств нефти и газа в пластовых условиях, включающей поршневой контейнер с пробой, снабженный верхним вентилем и нижним вентилем, блок перевода пробы из поршневого контейнера в измерительный пресс, который содержит цилиндр с отверстием в верхнем основании цилиндра для заполнения его пробой, поршень, перемещающийся внутри цилиндра, датчик давления, датчик линейных перемещений поршня, циркуляционный насос, вискозиметр, вакуумный насос, систему термостатирования, согласно изобретению на нижний вентиль поршневого контейнера с пробой своим выходным отверстием установлен программно-управляемый многопозиционный пневматический клапан, а верхний вентиль соединен с вентилем вакуумного насоса и с вентилем измерительного пресса, блок перевода пробы из поршневого контейнера включает сосуд с рабочей жидкостью, систему из двух поршневых насосов, каждый из которых снабжен датчиком давления, программно-управляемым многопозиционным пневматическим клапаном, приводом, блоком импульсного управления, причем каждый поршневой насос и его датчик давления подсоединен к входному отверстию соответствующего программно-управляемого многопозиционного пневматического клапана, сосуд с рабочей жидкостью соединен с одним из выходных отверстий программно-управляемого многопозиционного пневматического клапана каждого из насосов системы, другое выходное отверстие программно-управляемого многопозиционного пневматического клапана одного из насосов подсоединено к входному отверстию программно-управляемого многопозиционного пневматического клапана нижнего вентиля поршневого контейнера, а другое выходное отверстие программно-управляемого многопозиционного пневматического клапана другого насоса подсоединено к выходному отверстию программно-управляемого многопозиционного пневматического клапана нижнего вентиля поршневого контейнера и одновременно соединено с отверстием в нижнем основании цилиндра измерительного пресса; измерительный пресс выполнен в виде цилиндра с плавающим поршнем, снабженным ультразвуковым датчиком линейных перемещений, гибкая проводная связь которого герметично выведена через нижнее основание цилиндра наружу, и уплотнительным кольцом, герметизирующем поршень и образующим в полости цилиндра верхнюю и нижнюю камеры, при этом отверстие в верхнем основании цилиндра соединено с датчиком давления и с входным отверстием программно-управляемого многопозиционного пневматического клапана, одно из выходных отверстий которого соединено с вискозиметром, а другое выходное отверстие соединено с поршневым контейнером, плавающий поршень соединен с полым штоком, герметично выведенным наружу через нижнее основание цилиндра, где полый шток соосно соединен с измерительным штоком через тройник компенсатора, который снабжен вентилем, причем измерительный шток другим концом присоединен к датчику линейных перемещений, выполненному в виде электронного индикатора; циркуляционный насос включает поршневой насос, привод, блок импульсного управления, обеспечивая однонаправленную циркуляцию нефти с регулируемой скоростью, причем цилиндр поршневого насоса разделен поршнем на две полости, каждая из которых снабжена программно-управляемым многопозиционным пневматическим клапаном, подсоединенным через входное отверстие, а одно из выходных отверстий каждого из программно-управляемых многопозиционных пневматических клапанов соединено с вискозиметром, другое выходное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов соединено через вентиль компенсатора с измерительным прессом; вискозиметр выполнен в виде блока, который включает капилляр, дифференциальный манометр, программно-управляемый одинарный пневматический клапан, систему из двух тройников, систему из двух программно-управляемых многопозиционных пневматических клапанов, причем одно из выходных отверстий каждого из программно-управляемых многопозиционных пневматических клапанов соединено с дифференциальным манометром, а другое выходное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов подсоединено к одному из концов капилляра; входное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов подсоединено через тройник к байпасу с запирающим программно-управляемым одинарным пневматическим клапаном, при этом один из тройников соединен с выходным отверстием программно-управляемого многопозиционного пневматического клапана измерительного пресса, а другой тройник соединен с циркуляционным насосом; система термостатирования выполнена в виде единой термостатируемой емкости, в которой расположены все элементы установки.

Такие элементы заявляемой установки, как тройники и программно-управляемые многопозиционные пневматические клапаны, сами по себе являются известными, но их расположение, обеспечивающее связь между элементами установки, является новым. Применение системы насосов одинаковой производительности для подачи пробы из поршневого контейнера и для опускания плавающего поршня в измерительном прессе позволяет исключить какие-либо скачки давления. Такие элементы измерительного пресса заявляемой установки, как плавающий поршень, полый шток, ультразвуковой датчик линейных перемещений, электронный индикатор линейных перемещений, также сами по себе являются известными. Но новой является совокупность существенных признаков конструкции: плавающий поршень с уплотнительным кольцом, который разделяет цилиндр на две камеры, наличие ультразвукового датчика в плавающем поршне, связь плавающего поршня с электронным индикатором линейных перемещений через измерительный шток и полый шток, который через компенсатор подсоединен к системе циркуляции нефти. В результате возникает возможность плавно перейти от давления, равного пластовому в обеих камерах измерительного пресса, к понижению давления в верхней камере до давления насыщения, что позволяет одновременно определять точный объем как газа, так и нефти. Использование в заявляемой установке двуполостного поршневого циркуляционного насоса, снабженного блоком импульсного управления и программно-управляемыми многопозиционными пневматическими клапанами, соединенными с капилляром вискозиметра, снабженного тройниками и байпасом с программно-управляемым однопозиционными пневматическим клапаном и двумя программно-управляемыми многопозиционными пневматическими клапанами, является новым и позволяет установке работать в двух режимах: в режиме однонаправленной непрерывной циркуляции нефти и в режиме подачи нефти при измерении вязкости.

Совокупность перечисленных новых существенных признаков изобретения неожиданно позволяет производить смену режимов работы установки в любой момент времени при любых давлениях и температуре при сохранении высокой точности определения измеряемых параметров.

Особенности и преимущества настоящего изобретения поясняет чертеж.

На чертеже изображена схема установки для исследования нефти и газа в пластовых условиях, поясняющая принцип действия установки.

Установка для исследования нефти и газа в пластовых условиях содержит следующие элементы: поршневой контейнер 1, разделительный поршень 2, камеру для пробы 3 с верхним вентилем 4 и камеру для рабочей жидкости 5 с нижним вентилем 6, соединенным с многопозиционным пневматическим клапаном 7. Блок перевода пробы из поршневого контейнера 1 включает систему из двух поршневых насосов 8 и 9 соответственно с приводами 10, 11 и импульсными блоками управления 12, 13, датчики давления насосов 14 и 15, многопозиционные пневматические клапаны 16 и 17, сосуд с рабочей жидкостью 18. Датчик давления 14 подсоединен к входному отверстию 19 программно-управляемого многопозиционного пневматического клапана 16, а датчик давления 15 подсоединен к входному отверстию 20 программно-управляемого многопозиционного пневматического клапана 17, выходное отверстие 21 программно-управляемого многопозиционного пневматического клапана 16 соединено с сосудом с рабочей жидкостью 18, а выходное отверстие 22 программно-управляемого многопозиционного пневматического клапана 16 соединено с сосудом с рабочей жидкостью 18, выходное отверстие 23 программно-управляемого многопозиционного пневматического клапана 16 подсоединено к входному отверстию 24 программно-управляемого многопозиционного пневматического клапана 7, а выходное отверстие 25 программно-управляемого многопозиционного пневматического клапана 17 соединено с отверстием 26 нижнего основания 27 цилиндра измерительного пресса и одновременно соединено с выходным отверстием 28 многопозиционного пневматического клапана 7, боковое отверстие 29 которого подсоединено через вентиль 6 к камере с рабочей жидкостью 5 поршневого контейнера с пробой 1.

Измерительный пресс включает цилиндр 30, верхнее основание 31 с отверстием 32 для заполнения цилиндра пробой, соединенное с датчиком давления 34 и входным отверстием 35 программно-управляемого многопозиционного пневматического клапана 36, который через выходное отверстие 37 соединен с вискозиметром, а через выходное отверстие 38 с вентилем 39, который подсоединен к вентилю 4 поршневого контейнера 1 и к вентилю 40 вакуумного насоса 41; нижнюю камеру 42, плавающий поршень 43, ультразвуковой датчик 44 линейных перемещений с гибкой проводной связью 45, полый шток 46, измерительный шток 47, электронный индикатор 48 линейных перемещений, компенсатор 49, снабженный вентилем 50, соединенным с выходными отверстиями 51 и 52 программно-управляемых трехпозиционных пневматических клапанов 53 и 54 циркуляционного насоса.

Циркуляционный насос включает поршневой насос 55, привод 56 с блоком импульсного управления 57, поршень 58, полости 59 и 60, программно-управляемые многопозиционные пневматические клапаны 53 и 54, входные отверстия 61 и 62 которых соединены с полостями 59, 60, а выходные отверстия 63 и 64 программно-управляемых многопозиционных пневматических клапанов 53, 54 соединены с вискозиметром.

Вискозиметр включает капилляр 65, дифференциальный манометр 66, систему из двух программно-управляемых многопозиционных пневматических клапанов 67 и 68, байпас с запирающим программно-управляемым одинарным пневматическим клапаном 69, тройники 70 и 71, причем выходные отверстия 72 и 73 программно-управляемых многопозиционных пневматических клапанов 67 и 68 замкнуты на дифференциальный манометр 66, а выходные отверстия 74 и 75 программно-управляемых многопозиционных пневматических клапанов 67 и 68 подсоединены к концам капилляра 65, входные отверстия 76, 77 программно-управляемых многопозиционных пневматических клапанов 67, 68 соединены с тройниками 70 и 71 соответственно. При этом один из выходов тройника 70 через байпас с программно-управляемым одинарным пневматическим клапаном 69 замнут на выход тройника 71, а второй выход тройника 70 соединен с выходным отверстием 37 программно-управляемого многопозиционного пневматического клапана 36 измерительного пресса, а второй выход тройника 71 соединен с выходным отверстием 63 программно-управляемого многопозиционного пневматического клапана 53 и с выходным отверстием 64 программно-управляемого многопозиционного пневматического клапана 54 циркуляционного насоса. Единая термостатирующая система 78 охватывает все элементы установки.

Установка работает следующим образом.

Вначале подготавливают измерительный пресс к заполнению цилиндра исследуемой пробой, обеспечивая работу насоса 8 и насоса 9 в противофазе. Перед запуском насосов 8 и 9 отверстия 21, 25, 29 закрывают, а отверстия 23, 22, 28 открывают. Одновременно включают насосы 8 и 9, при этом насос 8 закачивает рабочую жидкость в камеру 42 измерительного пресса, а насос 9 засасывает рабочую жидкость в себя, затем одновременно останавливают плунжер насоса 8 в крайнем верхнем положении, а плунжер насоса 9 - в крайнем нижнем положении. В остановленном состоянии отверстие 21 открывают, а отверстия 23 и 22 закрывают. Оставляя отверстия 28 и 29 клапана 7 в прежнем положении, когда отверстие 28 открыто, а 29 закрыто, реверсируют работу насоса 8 и набирают в него рабочую жидкость из емкости 18, одновременно реверсируют работу насоса 9 и закачивают рабочую жидкость в камеру 42 измерительного пресса. В таком режиме работу насосов 8 и 9 осуществляют до тех пор, пока плавающий поршень 43 измерительного пресса не упрется в верхнее основание 31, а давление в камере 42 превысит давление в поршневом контейнере 1, чтобы исключить неконтролируемый выброс пробы при открытии вентиля 4, прекратив работу насоса 9 в верхнем положении его плунжера, а работу насоса 8 в промежуточном положении его плунжера. После этого закрывают отверстия 25 и 28, сохраняя избыточное давление в камере 42.

Открывают отверстия 38, 37, 72, 73, 74, 75, 69, 64, 52, 63, 51, вентили 39, 40, 50 и откачивают воздух вакуумным насосом 41, после чего закрывают вентиль 40.

Для перевода пробы из поршневого контейнера 1 в измерительный пресс и циркуляционный насос насос 8 используют для подкачки рабочей жидкости в камеру 5, а насос 9 для откачки рабочей жидкости из нижней камеры 42 в равных объемах.

Первоначально заполняют мертвый объем измерительного пресса и циркуляционного насоса следующим образом. Закрывают отверстия 22, 23 открывают отверстие 21 и, включив насос 8, опускают его плунжер и добирают в насос 8 рабочую жидкость из сосуда 18, после чего отверстие 21 закрывают, открывают отверстия 23, 29, вентиль 6 и вентиль 4, и, поднимая плунжер насоса 8, выдавливают рабочую жидкость в нижнюю камеру 5 поршневого контейнера, останавливают насос 8, закрывают отверстия 23, 29, открывают отверстие 21 и, включив насос 8, повторяют цикл закачки рабочей жидкости в камеру 5 до момента полного заполнения мертвого объема.

С момента заполнения мертвого объема измерительного пресса и циркуляционного насоса и достижения в нем пластового давления производят набор заданного объема пробы в измерительный пресс. Для этого, когда плунжер насоса 8 выдавливает рабочую жидкость в нижнюю камеру 5, включают в работу насос 9, закрыв выходное отверстие 22 клапана 17 и открыв отверстие 25, и опускают плунжер насоса 9 с той же скоростью, с какой поднимают плунжер 8. При достижении плунжером насоса 8 крайнего верхнего положения насосы 8 и 9 останавливают. Отверстие 23 закрывают, отверстие 21 открывают, закрывают отверстие 25, открывают отверстие 22, включают насосы 8 и 9 и, поднимая плунжер насоса 9, выталкивают рабочую жидкость в сосуд 18. Одновременно, используя насос 8, закачивают в него рабочую жидкость из сосуда 18.

При достижении плунжером насоса 8 крайнего нижнего положения, а плунжером насоса 9 крайнего верхнего положения насосы 8 и 9 останавливают. Закрывают отверстия 21, открывают отверстие 23 и 29, закрывают отверстие 22, открывают отверстие 25 и, включив насосы 8 и 9, повторяют цикл закачки рабочей жидкости в камеру 5 и откачки рабочей жидкости из камеры 42. При этом происходит поступление пробы из камеры 3 в верхнюю камеру 33 при сохранении пластового давления.

Объем нефти в верхней камере 33 определяют по показаниям электронного индикатора 48 линейных перемещений. Работу насосов 8 и 9 продолжают до тех пор, пока не закачают требуемой объем нефти в верхнюю камеру 33. После закачки в верхнюю камеру 33 необходимого для исследования объема пробы закрывают вентиль 39 и отверстие 38. Затем включают циркуляционный насос. Запуск циркуляционного насоса производят в следующем порядке.

Отверстия 52, 63, 74 и 75 закрывают. Привод 56 с блоком импульсного управления 57 включают таким образом, что поршень 58 перемещают вверх, при этом пробу из полости 60 подают в верхнюю камеру 33. Одновременно через полый шток 46 и ранее открытые вентиль 50 и отверстие 51 заполняют пробой полость 59. При достижении поршнем 58 верхнего положения привод 56 блоком импульсного управления 57 останавливают, открывают отверстия 52 и 63, закрывают отверстия 51 и 64 и реверсируют привод 56 блоком импульсного управления 57, при этом пробу из полости 59 подают в верхнюю камеру 33, а полость 60 заполняют пробой через полый шток 46.

При этом направление циркуляции пробы через измерительный пресс остается неизменным.

Для определения величины давления насыщения насосом 9 при непрерывно работающем циркуляционном насосе откачивают рабочую жидкость в камере 42 до тех пор, пока в верхней камере 33 не начнется выделение газа из нефти, что будет заметно по замедлению темпа падения давления. Давление насыщения будет соответствовать точке перегиба на графике зависимости изменения величины давления от объема нефти, получаемом в режиме реального времени по показаниям датчика давления 34 и электронного индикатора 48 линейных перемещений.

Для установления зависимости между давлением и количеством растворенного в нефти газа давление в камере 42 медленно снижают до давления, которое меньше давления насыщения, достигая в каждый момент времени равновесия системы нефть - газ в верхней камере 33. При этом ультразвуковым датчиком 44 линейных перемещений фиксируют расстояние от верхней горизонтальной плоскости поршня 43 до границы раздела газа и нефти, что позволяет определить объем нефти, а объем газа рассчитывают как разность полного объема верхней камеры 33, определяемую с помощью электронного индикатора 48 линейных перемещений, и объема нефти, определяемого с помощью ультразвукового датчика 44 линейных перемещений.

Таким образом, использование заявляемого измерительного пресса повышает точность измерений объемов нефти и газа и дополнительно позволяет получать непрерывные графические зависимости давления от объема как для нефти, так и для газа.

Для измерения вязкости пробы однопозиционный клапан 69 закрывают. Скорость движения поршня 58 приводят в соответствие с пропускной способностью капилляра 65 и диапазоном давлений, измеряемых дифференциальным манометром 66. На основании того, что линейное перемещение поршня 58 прямо пропорционально количеству импульсов, подаваемых с блока импульсного управления 57, автоматически подсчитывают объем жидкости, прокаченной через капилляр, а дифференциальным манометром 66 при этом измеряют перепад давления. Так как при движении поршня 58 в измерительный пресс подают такой же объем пробы из полости 60, какой отбирают из него в полость 59, то пульсации давления на концах капилляра вискозиметра при работе циркуляционного насоса не возникает, что упрощает и повышает точность измерения вязкости.

При этом динамическую вязкость нефти при заданной температуре термостатирования и давлении, заданном в измерительном прессе, рассчитывают по формуле Пуазейля

где - динамическая вязкость нефти, Па·с;

Q - объемная скорость, м3/с;

d - диаметр канала капилляра, м;

p - потеря давления на длине капилляра, Па;

L - длина канала капилляра, м.

При необходимости, кинематическая вязкость нефти при температуре термостатирования и давлении, заданном в измерительном прессе, рассчитывают по формуле

= / ,

где - кинематическая вязкость нефти, м2 /с;

- плотность пробы, кг/м3.

Таким образом, применение заявляемой установки для исследования свойств нефти и газа в пластовых условиях повышает точность определения объемов нефти и газа, а также вязкости нефти.

Дополнительным преимуществом заявляемого изобретения является сокращение времени измерения характеристик проб в пластовых условиях, что в совокупности с повышением точности измерений увеличивает эффективность промышленного применения заявляемой установки.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Установка для исследования свойств нефти и газа в пластовых условиях, включающая поршневой контейнер с пробой, снабженный верхним вентилем и нижним вентилем, блок перевода пробы из поршневого контейнера в измерительный пресс, который содержит цилиндр с отверстием в верхнем основании цилиндра для заполнения его пробой, поршень, перемещающийся внутри цилиндра, датчик давления, датчик линейных перемещений поршня, циркуляционный насос, вискозиметр, вакуумный насос, систему термостатирования, отличающаяся тем, что на нижний вентиль поршневого контейнера с пробой своим выходным отверстием установлен программно-управляемый многопозиционный пневматический клапан, а верхний вентиль соединен с вентилем вакуумного насоса и с вентилем измерительного пресса, блок перевода пробы из поршневого контейнера включает сосуд с рабочей жидкостью, систему из двух поршневых насосов, каждый из которых снабжен датчиком давления, программно-управляемым многопозиционным пневматическим клапаном, приводом, блоком импульсного управления, причем каждый поршневой насос и его датчик давления подсоединен к входному отверстию соответствующего программно-управляемого многопозиционного пневматического клапана, сосуд с рабочей жидкостью соединен с выходным отверстием программно-управляемого многопозиционного пневматического клапана каждого насоса, другое выходное отверстие программно-управляемого многопозиционного пневматического клапана одного из насосов подсоединено к входному отверстию программно-управляемого многопозиционного пневматического клапана нижнего вентиля поршневого контейнера, а другое выходное отверстие программно-управляемого многопозиционного пневматического клапана другого насоса подсоединено к выходному отверстию программно-управляемого многопозиционного пневматического клапана нижнего вентиля поршневого контейнера, и одновременно соединено с отверстием в нижнем основании цилиндра измерительного пресса; измерительный пресс выполнен в виде цилиндра с плавающим поршнем, снабженным ультразвуковым датчиком линейных перемещений, гибкая проводная связь которого герметично выведена через нижнее основание цилиндра наружу, и уплотнительным кольцом, герметизирующем поршень, образуя в полости цилиндра верхнюю и нижнюю камеры, при этом отверстие в верхнем основании цилиндра соединено с датчиком давления и с входным отверстием программно-управляемого многопозиционного пневматического клапана, одно из выходных отверстий которого соединено с вискозиметром, а другое выходное отверстие соединено с поршневым контейнером, плавающий поршень соединен с полым штоком, герметично выведенным наружу через нижнее основание цилиндра, где полый шток соосно соединен с измерительным штоком через тройник компенсатора, который снабжен вентилем, причем измерительный шток другим концом присоединен к датчику линейных перемещений, выполненному в виде электронного индикатора; циркуляционный насос включает поршневой насос, привод, блок импульсного управления, обеспечивая однонаправленную циркуляцию нефти с регулируемой скоростью, причем цилиндр насоса разделен поршнем на две полости, каждая из которых снабжена программно-управляемым многопозиционным пневматическим клапаном, подсоединенным через входное отверстие, а одно из выходных отверстий каждого из программно-управляемых многопозиционных пневматических клапанов соединено с вискозиметром, другое выходное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов соединено через вентиль компенсатора с измерительным прессом; вискозиметр выполнен в виде блока, который включает капилляр, дифференциальный манометр, программно-управляемый одинарный пневматический клапан, систему из двух тройников, систему из двух программно-управляемых многопозиционных пневматических клапанов, причем одно из выходных отверстий каждого из программно-управляемых многопозиционных пневматических клапанов соединено с дифференциальным манометром, а другое выходное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов подсоединено к одному из концов капилляра; входное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов подсоединено через тройник к байпасу с запирающим программно-управляемым одинарным пневматическим клапаном, причем один из тройников соединен с выходным отверстием программно-управляемого многопозиционного пневматического клапана измерительного пресса, а другой тройник соединен с циркуляционным насосом; система термостатирования выполнена в виде единой термостатируемой емкости.

www.freepatent.ru

Приборы для исследования свойств пластовых нефтей

    ПРИБОРЫ ДЛЯ ИССЛЕДОВАНИЯ СВОЙСТВ ПЛАСТОВЫХ НЕФТЕЙ [c.113]

    Кроме аппаратуры АСМ-ЗООМ, АСМ-600, для исследования свойств нефтей и их изменений в зависимости от пластовых условий используются и другие приборы. Физические свойства нефтей находятся в тесной связи с их электрическими, акустическими и другими параметрами. Принцип действия приборов для оценки свойств нефтей основан на измерении упомянутых характеристик. Например, в момент начала выделения газа из нефти при снижении давления в пробе проводимость среды для ультразвука резко снижается. Давление, соответствующее точке излома кривой зависимости интенсивности ультразвука от давления, будет соответствовать давлению насыщения нефти газом. Существует много разных типов малогабаритных пробоотборников, портативных установок для исследования пластовых нефтей, установок для анализа их свойств в полевых условиях и т.д. [c.118]

    Создан комплекс приборов для исследования свойств пластовых нефтей непосредственно на забое скважины. В качестве примера на рис. 51 приведена схема устройства глубинного капиллярного вискозиметра ВНИИнефть. Принцип его действия основан на измерении времени втекания известного объема нефти из скважины в емкость А через капилляр 1 при заданном перепаде давления на концах капилляра. Емкость А перед спуском заполняется газом под давлением несколько меньшим, чем давление в скважине на глубине измерения вязкости нефти. Под давлением нефти плавающий разделитель 2 и шток i вместе с пером движутся вниз. При этом перо записывает диаграмму на бланке барабана 4, который вращается часовым [c.118]

    Отечественные и зарубежные ротационные приборы, применяемые в лабораториях для изучения реологических свойств нефтей, позволяют вести исследования свойств жидкостей под высоким давлением при различных температурах. Однако их можно использовать для изучения реологических свойств пластовых нефтей лишь при больших напряжениях сдвига, характерных для призабойной зоны скважин. Они не приспособлены для исследования пластовых нефтей при малых градиентах скоростей и напряжений сдвига, соответствующих условиям их течения вдали от скважин. [c.24]

    Исследовано изменение механической прочности межфазных слоев на границе нефть - вода во времени для нескольких нефтш, образующих устойчивые эмульсии. Исследование проводили по методике, разработанной в институте физической химии АН СССР [20], с использованием прибора СНС-2. Механическая прочность межфазного ело характеризуется предельным напряжением сдвига Рт, определяемым по углу закручивания вольфрамовой нити, на которой подвещен стеклянный диск, находящийся на границе раздела нефть - вода. Экспериментально измерена механическая прочность межфазного слоя на границе нефть -вода через 5, 10, 100, 300, 1000 и 1500 мин после формирования слоя (высокосмолистая арпанская, смолистая ромашкинская и высокопара-финистая мангышлакская нефти). Все испытанные нефти, весьма различные по своему составу и свойствам, образуют при интенсивном перемешивании с водой (пластовой и дистиллированной) устойчивые эмульсии. [c.23]

    Для исследования реологических свойств слабоструктуриро-.ванных нефтей широко применяются капиллярные приборы. Они имеют ряд преимуществ позволяют изучать реологические свойства практически любых слабоструктурированных нефтей с. достаточной точностью капилляры легко приспособить для измерений при высоких статических давлениях, соответствующих пластовым для исследования этим методом достаточны очень малые объемы жидкостей. Капилляры могут быть органически вписаны в конструкцию установки по изучению фильтрации аномальных нефтей в пористых средах. [c.71]

chem21.info

Установка для исследования пластовой нефти и газа

Изобретение относится к установкам для исследования нефти и может применяться, в частности, в установках для исследования свойств нефти и газа в пластовых условиях. Установка для исследования свойств нефти и газа в пластовых условиях включает поршневой контейнер с пробой, блок перевода пробы из поршневого контейнера в измерительный пресс, состоящий из двух поршневых насосов одинаковой производительности. Один из них подает пробу из поршневого контейнера, а второй опускает плавающий поршень в измерительном прессе. Измерительный пресс снабжен плавающим поршнем с полым штоком, ультразвуковым датчиком линейных перемещений для определения объема нефти и электронным датчиком линейных перемещений для определения объема газа. Циркуляционный поршневой насос обеспечивает однонаправленную циркуляцию нефти с регулируемой скоростью. Вискозиметр снабжен байпасом с запирающим клапаном. Единая термостатирующая емкость охватывает все элементы установки. Применение установки повышает точность определения объемов нефти и газа, а также вязкости нефти, сокращает время измерения характеристик проб в пластовых условиях, что в совокупности увеличивает эффективность работы установки. 1 ил.

Настоящее изобретение относится к установкам для исследования нефти и касается как конструкции отдельных частей таких установок, так и связей между ними, и может применяться, в частности, в установках для исследования свойств нефти и газа в пластовых условиях. Изобретение может быть использовано в нефтедобывающей отрасли, в том числе и на месторождениях, где повсеместно развит режим растворенного газа.

Известно устройство для исследования свойств нефти и газа в пластовых условиях (см. Н.А.Тривус и К.В.Виноградов. Исследование нефти и газа в пластовых условиях. Азнефтеиздат, 1955).

Недостатком этого устройства является применение ртути в качестве рабочей жидкости из-за высокой токсичности ртути, а также искажение результатов при исследовании сернистой нефти, вызываемых ртутью.

Наиболее близкой по технической сущности и достигаемому результату является установка для исследования пластовой нефти и газа УИПН-2, в которую входят поршневой контейнер с пробой, блок для перевода пробы из поршневого контейнера в измерительный пресс и циркуляционный насос, верхний и нижний манифольды, шариковый вискозиметр, система термостатирования (см. В.Н.Мамуна, Г.Ф.Требин, Б.В.Ульянинский «Экспериментальное исследование пластовых нефтей» ГОСИНТИ Москва, 1960, стр.40).

Блок для перевода пробы из поршневого контейнера в измерительный пресс и циркуляционный насос состоит из жидкостного регулируемого насоса с напорным бачком и промежуточной емкости.

Измерительный пресс установки состоит из цилиндра, поршня, перемещающегося внутри цилиндра от электромеханического привода, линейной неподвижной шкалы и вращающегося лимба, связанных с приводом, с помощью которых производят определение объема, занимаемого нефтью в измерительном прессе.

Циркуляционный насос для перемешивания пробы в измерительном прессе с целью установления фазового и термического равновесия выполнен в виде электромагнитного насоса. Циркуляционный электромагнитный насос установки состоит из немагнитного стального корпуса, в крышках которого имеются верхний и нижний штуцеры. Внутри корпуса находится железный сердечник с тарельчатым нагнетательным клапаном. На корпусе помещен соленоид, на который периодически (60 раз в минуту) подают напряжение постоянного тока. Возникающее при этом магнитное поле не поглощается немагнитным корпусом насоса и воздействует на железный сердечник-поршень, втягивая его вверх. В момент, когда напряжение не подают на соленоид, втягивающее магнитное поле снимается, и сердечник-поршень под силами собственного веса и возвратной пружины возвращается в нижнее положение. Под влиянием периодически возникающего магнитного поля и отталкивающей силы пружины поршень приобретает возвратно-поступательное движение. При ходе вверх под поршнем создается разрежение, открывается всасывающий клапан, и нефть через отверстие в нижнем штуцере поступает в цилиндр насоса. Одновременно поршень выталкивает через верхний штуцер поступившую ранее порцию нефти. Периодически двигаясь вверх и вниз, поршень производит перекачивание нефти из нижней части пресса в верхнюю часть.

Вискозиметр установки относится к типу приборов, в которых вязкость жидкой пробы определяют по времени качения шарика в наклонной трубке, заполненной исследуемой жидкостью.

Установка УИПН-2 имеет целый ряд недостатков: блок для перевода пробы имеет жидкостной регулируемый насос с ручной системой регулировки подачи, которую необходимо согласовывать с производительностью измерительного пресса и применять промежуточную емкость, заполненную маслом, смягчающую пульсирующую подачу жидкостного насоса, которая приводит к скачкам давления в поршневом контейнере и измерительном прессе; шариковый вискозиметр имеет тот недостаток, что любые примеси или любое сужение проходного сечения трубки вискозиметра приводят к «прихвату» шарика, в связи с чем возникают погрешности измерений; наличие циркуляционного электромагнитного насоса, у которого высокая и нерегулируемая скорость срабатывания сердечника-поршня приводит к тому, что нефть из нижней части пресса поступает в верхнюю часть пресса, при испытании заполненную газом в виде распыленного облака нефти, которая при этом дополнительно насыщается газом, что замедляет установление равновесия в системе нефть-газ и снижает точность измерений; конструкция измерительного пресса не позволяет определять объем газа внутри измерительного пресса; раздельное термостатирование измерительного пресса и вискозиметра может приводить к расхождению температуры пробы в них.

Таким образом, основным недостатком функционирования установки УИПН-2 является необходимость ручного согласования подачи жидкостного насоса и производительности измерительного пресса при переводе пробы; ненадежность работы шарикового вискозиметра; неэффективная работа циркуляционного насоса; невозможность автоматизации измерений и соответственно их компьютерного отображения в режиме реального времени.

Таким образом, перечисленные недостатки функционирования установки УИПН-2 снижают точность определения измеряемых характеристик проб в пластовых условиях.

Предметом заявляемого изобретения является установка для исследования свойств нефти и газа в пластовых условиях, которая способна повысить точность определения измеряемых характеристик проб в пластовых условиях.

Поставленная задача решается тем, что в установке для исследования свойств нефти и газа в пластовых условиях, включающей поршневой контейнер с пробой, снабженный верхним вентилем и нижним вентилем, блок перевода пробы из поршневого контейнера в измерительный пресс, который содержит цилиндр с отверстием в верхнем основании цилиндра для заполнения его пробой, поршень, перемещающийся внутри цилиндра, датчик давления, датчик линейных перемещений поршня, циркуляционный насос, вискозиметр, вакуумный насос, систему термостатирования, согласно изобретению на нижний вентиль поршневого контейнера с пробой своим выходным отверстием установлен программно-управляемый многопозиционный пневматический клапан, а верхний вентиль соединен с вентилем вакуумного насоса и с вентилем измерительного пресса, блок перевода пробы из поршневого контейнера включает сосуд с рабочей жидкостью, систему из двух поршневых насосов, каждый из которых снабжен датчиком давления, программно-управляемым многопозиционным пневматическим клапаном, приводом, блоком импульсного управления, причем каждый поршневой насос и его датчик давления подсоединен к входному отверстию соответствующего программно-управляемого многопозиционного пневматического клапана, сосуд с рабочей жидкостью соединен с одним из выходных отверстий программно-управляемого многопозиционного пневматического клапана каждого из насосов системы, другое выходное отверстие программно-управляемого многопозиционного пневматического клапана одного из насосов подсоединено к входному отверстию программно-управляемого многопозиционного пневматического клапана нижнего вентиля поршневого контейнера, а другое выходное отверстие программно-управляемого многопозиционного пневматического клапана другого насоса подсоединено к выходному отверстию программно-управляемого многопозиционного пневматического клапана нижнего вентиля поршневого контейнера и одновременно соединено с отверстием в нижнем основании цилиндра измерительного пресса; измерительный пресс выполнен в виде цилиндра с плавающим поршнем, снабженным ультразвуковым датчиком линейных перемещений, гибкая проводная связь которого герметично выведена через нижнее основание цилиндра наружу, и уплотнительным кольцом, герметизирующем поршень и образующим в полости цилиндра верхнюю и нижнюю камеры, при этом отверстие в верхнем основании цилиндра соединено с датчиком давления и с входным отверстием программно-управляемого многопозиционного пневматического клапана, одно из выходных отверстий которого соединено с вискозиметром, а другое выходное отверстие соединено с поршневым контейнером, плавающий поршень соединен с полым штоком, герметично выведенным наружу через нижнее основание цилиндра, где полый шток соосно соединен с измерительным штоком через тройник компенсатора, который снабжен вентилем, причем измерительный шток другим концом присоединен к датчику линейных перемещений, выполненному в виде электронного индикатора; циркуляционный насос включает поршневой насос, привод, блок импульсного управления, обеспечивая однонаправленную циркуляцию нефти с регулируемой скоростью, причем цилиндр поршневого насоса разделен поршнем на две полости, каждая из которых снабжена программно-управляемым многопозиционным пневматическим клапаном, подсоединенным через входное отверстие, а одно из выходных отверстий каждого из программно-управляемых многопозиционных пневматических клапанов соединено с вискозиметром, другое выходное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов соединено через вентиль компенсатора с измерительным прессом; вискозиметр выполнен в виде блока, который включает капилляр, дифференциальный манометр, программно-управляемый одинарный пневматический клапан, систему из двух тройников, систему из двух программно-управляемых многопозиционных пневматических клапанов, причем одно из выходных отверстий каждого из программно-управляемых многопозиционных пневматических клапанов соединено с дифференциальным манометром, а другое выходное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов подсоединено к одному из концов капилляра; входное отверстие каждого из программно-управляемых многопозиционных пневматических клапанов подсоединено через тройник к байпасу с запирающим программно-управляемым одинарным пневматическим клапаном, при этом один из тройников соединен с выходным отверстием программно-управляемого многопозиционного пневматического клапана измерительного пресса, а другой тройник соединен с циркуляционным насосом; система термостатирования выполнена в виде единой термостатируемой емкости, в которой расположены все элементы установки.

Такие элементы заявляемой установки, как тройники и программно-управляемые многопозиционные пневматические клапаны, сами по себе являются известными, но их расположение, обеспечивающее связь между элементами установки, является новым. Применение системы насосов одинаковой производительности для подачи пробы из поршневого контейнера и для опускания плавающего поршня в измерительном прессе позволяет исключить какие-либо скачки давления. Такие элементы измерительного пресса заявляемой установки, как плавающий поршень, полый шток, ультразвуковой датчик линейных перемещений, электронный индикатор линейных перемещений, также сами по себе являются известными. Но новой является совокупность существенных признаков конструкции: плавающий поршень с уплотнительным кольцом, который разделяет цилиндр на две камеры, наличие ультразвукового датчика в плавающем поршне, связь плавающего поршня с электронным индикатором линейных перемещений через измерительный шток и полый шток, который через компенсатор подсоединен к системе циркуляции нефти. В результате возникает возможность плавно перейти от давления, равного пластовому в обеих камерах измерительного пресса, к понижению давления в верхней камере до давления насыщения, что позволяет одновременно определять точный объем как газа, так и нефти. Использование в заявляемой установке двуполостного поршневого циркуляционного насоса, снабженного блоком импульсного управления и программно-управляемыми многопозиционными пневматическими клапанами, соединенными с капилляром вискозиметра, снабженного тройниками и байпасом с программно-управляемым однопозиционными пневматическим клапаном и двумя программно-управляемыми многопозиционными пневматическими клапанами, является новым и позволяет установке работать в двух режимах: в режиме однонаправленной непрерывной циркуляции нефти и в режиме подачи нефти при измерении вязкости.

Совокупность перечисленных новых существенных признаков изобретения неожиданно позволяет производить смену режимов работы установки в любой момент времени при любых давлениях и температуре при сохранении высокой точности определения измеряемых параметров.

Особенности и преимущества настоящего изобретения поясняет чертеж.

На чертеже изображена схема установки для исследования нефти и газа в пластовых условиях, поясняющая принцип действия установки.

Установка для исследования нефти и газа в пластовых условиях содержит следующие элементы: поршневой контейнер 1, разделительный поршень 2, камеру для пробы 3 с верхним вентилем 4 и камеру для рабочей жидкости 5 с нижним вентилем 6, соединенным с многопозиционным пневматическим клапаном 7. Блок перевода пробы из поршневого контейнера 1 включает систему из двух поршневых насосов 8 и 9 соответственно с приводами 10, 11 и импульсными блоками управления 12, 13, датчики давления насосов 14 и 15, многопозиционные пневматические клапаны 16 и 17, сосуд с рабочей жидкостью 18. Датчик давления 14 подсоединен к входному отверстию 19 программно-управляемого многопозиционного пневматического клапана 16, а датчик давления 15 подсоединен к входному отверстию 20 программно-управляемого многопозиционного пневматического клапана 17, выходное отверстие 21 программно-управляемого многопозиционного пневматического клапана 16 соединено с сосудом с рабочей жидкостью 18, а выходное отверстие 22 программно-управляемого многопозиционного пневматического клапана 16 соединено с сосудом с рабочей жидкостью 18, выходное отверстие 23 программно-управляемого многопозиционного пневматического клапана 16 подсоединено к входному отверстию 24 программно-управляемого многопозиционного пневматического клапана 7, а выходное отверстие 25 программно-управляемого многопозиционного пневматического клапана 17 соединено с отверстием 26 нижнего основания 27 цилиндра измерительного пресса и одновременно соединено с выходным отверстием 28 многопозиционного пневматического клапана 7, боковое отверстие 29 которого подсоединено через вентиль 6 к камере с рабочей жидкостью 5 поршневого контейнера с пробой 1.

Измерительный пресс включает цилиндр 30, верхнее основание 31 с отверстием 32 для заполнения цилиндра пробой, соединенное с датчиком давления 34 и входным отверстием 35 программно-управляемого многопозиционного пневматического клапана 36, который через выходное отверстие 37 соединен с вискозиметром, а через выходное отверстие 38 с вентилем 39, который подсоединен к вентилю 4 поршневого контейнера 1 и к вентилю 40 вакуумного насоса 41; нижнюю камеру 42, плавающий поршень 43, ультразвуковой датчик 44 линейных перемещений с гибкой проводной связью 45, полый шток 46, измерительный шток 47, электронный индикатор 48 линейных перемещений, компенсатор 49, снабженный вентилем 50, соединенным с выходными отверстиями 51 и 52 программно-управляемых трехпозиционных пневматических клапанов 53 и 54 циркуляционного насоса.

Циркуляционный насос включает поршневой насос 55, привод 56 с блоком импульсного управления 57, поршень 58, полости 59 и 60, программно-управляемые многопозиционные пневматические клапаны 53 и 54, входные отверстия 61 и 62 которых соединены с полостями 59, 60, а выходные отверстия 63 и 64 программно-управляемых многопозиционных пневматических клапанов 53, 54 соединены с вискозиметром.

Вискозиметр включает капилляр 65, дифференциальный манометр 66, систему из двух программно-управляемых многопозиционных пневматических клапанов 67 и 68, байпас с запирающим программно-управляемым одинарным пневматическим клапаном 69, тройники 70 и 71, причем выходные отверстия 72 и 73 программно-управляемых многопозиционных пневматических клапанов 67 и 68 замкнуты на дифференциальный манометр 66, а выходные отверстия 74 и 75 программно-управляемых многопозиционных пневматических клапанов 67 и 68 подсоединены к концам капилляра 65, входные отверстия 76, 77 программно-управляемых многопозиционных пневматических клапанов 67, 68 соединены с тройниками 70 и 71 соответственно. При этом один из выходов тройника 70 через байпас с программно-управляемым одинарным пневматическим клапаном 69 замнут на выход тройника 71, а второй выход тройника 70 соединен с выходным отверстием 37 программно-управляемого многопозиционного пневматического клапана 36 измерительного пресса, а второй выход тройника 71 соединен с выходным отверстием 63 программно-управляемого многопозиционного пневматического клапана 53 и с выходным отверстием 64 программно-управляемого многопозиционного пневматического клапана 54 циркуляционного насоса. Единая термостатирующая система 78 охватывает все элементы установки.

Установка работает следующим образом.

Вначале подготавливают измерительный пресс к заполнению цилиндра исследуемой пробой, обеспечивая работу насоса 8 и насоса 9 в противофазе. Перед запуском насосов 8 и 9 отверстия 21, 25, 29 закрывают, а отверстия 23, 22, 28 открывают. Одновременно включают насосы 8 и 9, при этом насос 8 закачивает рабочую жидкость в камеру 42 измерительного пресса, а насос 9 засасывает рабочую жидкость в себя, затем одновременно останавливают плунжер насоса 8 в крайнем верхнем положении, а плунжер насоса 9 - в крайнем нижнем положении. В остановленном состоянии отверстие 21 открывают, а отверстия 23 и 22 закрывают. Оставляя отверстия 28 и 29 клапана 7 в прежнем положении, когда отверстие 28 открыто, а 29 закрыто, реверсируют работу насоса 8 и набирают в него рабочую жидкость из емкости 18, одновременно реверсируют работу насоса 9 и закачивают рабочую жидкость в камеру 42 измерительного пресса. В таком режиме работу насосов 8 и 9 осуществляют до тех пор, пока плавающий поршень 43 измерительного пресса не упрется в верхнее основание 31, а давление в камере 42 превысит давление в поршневом контейнере 1, чтобы исключить неконтролируемый выброс пробы при открытии вентиля 4, прекратив работу насоса 9 в верхнем положении его плунжера, а работу насоса 8 в промежуточном положении его плунжера. После этого закрывают отверстия 25 и 28, сохраняя избыточное давление в камере 42.

Открывают отверстия 38, 37, 72, 73, 74, 75, 69, 64, 52, 63, 51, вентили 39, 40, 50 и откачивают воздух вакуумным насосом 41, после чего закрывают вентиль 40.

Для перевода пробы из поршневого контейнера 1 в измерительный пресс и циркуляционный насос насос 8 используют для подкачки рабочей жидкости в камеру 5, а насос 9 для откачки рабочей жидкости из нижней камеры 42 в равных объемах.

Первоначально заполняют мертвый объем измерительного пресса и циркуляционного насоса следующим образом. Закрывают отверстия 22, 23 открывают отверстие 21 и, включив насос 8, опускают его плунжер и добирают в насос 8 рабочую жидкость из сосуда 18, после чего отверстие 21 закрывают, открывают отверстия 23, 29, вентиль 6 и вентиль 4, и, поднимая плунжер насоса 8, выдавливают рабочую жидкость в нижнюю камеру 5 поршневого контейнера, останавливают насос 8, закрывают отверстия 23, 29, открывают отверстие 21 и, включив насос 8, повторяют цикл закачки рабочей жидкости в камеру 5 до момента полного заполнения мертвого объема.

С момента заполнения мертвого объема измерительного пресса и циркуляционного насоса и достижения в нем пластового давления производят набор заданного объема пробы в измерительный пресс. Для этого, когда плунжер насоса 8 выдавливает рабочую жидкость в нижнюю камеру 5, включают в работу насос 9, закрыв выходное отверстие 22 клапана 17 и открыв отверстие 25, и опускают плунжер насоса 9 с той же скоростью, с какой поднимают плунжер 8. При достижении плунжером насоса 8 крайнего верхнего положения насосы 8 и 9 останавливают. Отверстие 23 закрывают, отверстие 21 открывают, закрывают отверстие 25, открывают отверстие 22, включают насосы 8 и 9 и, поднимая плунжер насоса 9, выталкивают рабочую жидкость в сосуд 18. Одновременно, используя насос 8, закачивают в него рабочую жидкость из сосуда 18.

При достижении плунжером насоса 8 крайнего нижнего положения, а плунжером насоса 9 крайнего верхнего положения насосы 8 и 9 останавливают. Закрывают отверстия 21, открывают отверстие 23 и 29, закрывают отверстие 22, открывают отверстие 25 и, включив насосы 8 и 9, повторяют цикл закачки рабочей жидкости в камеру 5 и откачки рабочей жидкости из камеры 42. При этом происходит поступление пробы из камеры 3 в верхнюю камеру 33 при сохранении пластового давления.

Объем нефти в верхней камере 33 определяют по показаниям электронного индикатора 48 линейных перемещений. Работу насосов 8 и 9 продолжают до тех пор, пока не закачают требуемой объем нефти в верхнюю камеру 33. После закачки в верхнюю камеру 33 необходимого для исследования объема пробы закрывают вентиль 39 и отверстие 38. Затем включают циркуляционный насос. Запуск циркуляционного насоса производят в следующем порядке.

Отверстия 52, 63, 74 и 75 закрывают. Привод 56 с блоком импульсного управления 57 включают таким образом, что поршень 58 перемещают вверх, при этом пробу из полости 60 подают в верхнюю камеру 33. Одновременно через полый шток 46 и ранее открытые вентиль 50 и отверстие 51 заполняют пробой полость 59. При достижении поршнем 58 верхнего положения привод 56 блоком импульсного управления 57 останавливают, открывают отверстия 52 и 63, закрывают отверстия 51 и 64 и реверсируют привод 56 блоком импульсного управления 57, при этом пробу из полости 59 подают в верхнюю камеру 33, а полость 60 заполняют пробой через полый шток 46.

При этом направление циркуляции пробы через измерительный пресс остается неизменным.

Для определения величины давления насыщения насосом 9 при непрерывно работающем циркуляционном насосе откачивают рабочую жидкость в камере 42 до тех пор, пока в верхней камере 33 не начнется выделение газа из нефти, что будет заметно по замедлению темпа падения давления. Давление насыщения будет соответствовать точке перегиба на графике зависимости изменения величины давления от объема нефти, получаемом в режиме реального времени по показаниям датчика давления 34 и электронного индикатора 48 линейных перемещений.

Для установления зависимости между давлением и количеством растворенного в нефти газа давление в камере 42 медленно снижают до давления, которое меньше давления насыщения, достигая в каждый момент времени равновесия системы нефть - газ в верхней камере 33. При этом ультразвуковым датчиком 44 линейных перемещений фиксируют расстояние от верхней горизонтальной плоскости поршня 43 до границы раздела газа и нефти, что позволяет определить объем нефти, а объем газа рассчитывают как разность полного объема верхней камеры 33, определяемую с помощью электронного индикатора 48 линейных перемещений, и объема нефти, определяемого с помощью ультразвукового датчика 44 линейных перемещений.

Таким образом, использование заявляемого измерительного пресса повышает точность измерений объемов нефти и газа и дополнительно позволяет получать непрерывные графические зависимости давления от объема как для нефти, так и для газа.

Для измерения вязкости пробы однопозиционный клапан 69 закрывают. Скорость движения поршня 58 приводят в соответствие с пропускной способностью капилляра 65 и диапазоном давлений, измеряемых дифференциальным манометром 66. На основании того, что линейное перемещение поршня 58 прямо пропорционально количеству импульсов, подаваемых с блока импульсного управления 57, автоматически подсчитывают объем жидкости, прокаченной через капилляр, а дифференциальным манометром 66 при этом измеряют перепад давления. Так как при движении поршня 58 в измерительный пресс подают такой же объем пробы из полости 60, какой отбирают из него в полость 59, то пульсации давления на концах капилляра вискозиметра при работе циркуляционного насоса не возникает, что упрощает и повышает точность измерения вязкости.

При этом динамическую вязкость нефти при заданной температуре термостатирования и давлении, заданном в измерительном прессе, рассчитывают по формуле Пуазейля

где η - динамическая вязкость нефти, Па·с;

Q - объемная скорость, м3/с;

d - диаметр канала капилляра, м;

Δp - потеря давления на длине капилляра, Па;

L - длина канала капилляра, м.

При необходимости, кинематическая вязкость нефти при температуре термостатирования и давлении, заданном в измерительном прессе, рассчитывают по формуле

ν=η/ρ,

где ν - кинематическая вязкость нефти, м2/с;

ρ - плотность пробы, кг/м3.

Таким образом, применение заявляемой установки для исследования свойств нефти и газа в пластовых условиях повышает точность определения объемов нефти и газа, а также вязкости нефти.

Дополнительным преимуществом заявляемого изобретения является сокращение времени измерения характеристик проб в пластовых условиях, что в совокупности с повышением точности измерений увеличивает эффективность промышленного применения заявляемой установки.

bankpatentov.ru

Девликамов, 3. А. Хабибуллин. Установка для исследования структурной вязкости пластовой нефти

из "Физикохимия и гидродинамика нефтяного пласта. Вып. 05"

Результаты определения коэффициентов сжимаемости песчаников Башкирии. Выгодский Е. М. Труды УНИ, вып. V. Изд-во Недра , 1969. [c.148] Коэффициенты сжимаемости определялись- на естественных образцах песчаников, отобранных из продуктивных девонских и угленосных пластов нефтяных месторождений Башкирии. Коэффициенты сжимаемости определялись по двум методикам. По первой методике давление в порах образца поддерживалось постоянным, а всестороннее обжатие менялось. По второй методике всестороннее обжатие оставалось постоянным, а давление в порах образца менялось. [c.148] Величины коэффициентов, определенные по первой и второй методике, оказались различными. [c.148] Таблиц 5, библиография — 1 название. [c.148] Показано, что коэффициент светопреломления нефти закономерно изменяется по пласту, увеличиваясь с приближением к водо-нефтяному контакту. Найдено, что ва Манчаровской площади существует линейная корреляционнад связь между величиной коэффициента свето-прелрмления нефти и расстоянием до водо-нефтяного контакта. Приводятся параметры этой связи. Рассмотрены причины изменения коэффициента светопреломления нефти по пласту. [c.149] Определение удельного веса исследуемых нефтей предлагается производить нё взвешиванием, а определением перепада давления при помощи двух простейших и-образных дифференциальных манометров на концах капилляра, через который движется исследуемая нефть. Дифференциальные манометры представляют собой две соединенные между собой толстостенные трубы из плексигласа, присоединенные параллельно к концам капилляра. [c.149] В один из дифманометров заливается ртуть, в другой — эталонная жидкость, не смешивающаяся с нефтью и не растворяющаяся в ней. с удельным весом больше, чем удельный вес исследуемой жидкости. [c.149] Иллюстраций 1, библиография—3 названия. [c.149] Исследования коллоидных свойств нефти, обусловленных содержанием в них асфаль-тово-смолистых веществ, проводились несколькими методами. [c.149] Центрифугирование смеси нефти с легкими парафиновыми углеводородами и с ароматическими углеводородами показало, что легкие парафиновые углеводороды вызывают уменьшение степени дисперсности асфальтенов, концентрация которых увеличивалась в нижней части пробирки. [c.149] Фотоколориметрические исследования в инфракрасных лучах тех же смесей нефти с парафиновыми и ароматическими углеводородами подтвердили явление агрегация асфальтенов при добавлении к нефти парафиновых углеводородов. Определены значения динамического напряжения сдвига при разнвх концентрациях петролейного эфира в нефти. Смеси нефти с петролейным эфиром моделируют пластовые нефти, содержащие растворенные газообразные предельные углеводороды. Показано, как указанные свойства нефти могут влиять на процесс разработки нефтяных пластов. [c.149] Таблиц 5, иллюстраций 9. библиография — 22 названия. [c.149] Исследования зависимости нефтеотдачи от химического состава-нефти и направления вытеснения нефти водой. Девликамов В. В., Мархасин И. Л., Придав-ников Г. Г. Труды УНИ. вып. V. Изд-во Недра , 1969. [c.149] Химичёский состав нефти заметно меняется по простиранию пласта. Для выяснения, как это влияет на коэффициент вытеснения нефти водой, проведены опыты с иефтью угленосной толщи Манчаровского месторождения, отобранной из скважин в своде складки и и вбяяви водо-нефтяного контакта, где содержание асфальтово-смолистых. веществ более высокое. Описана установка, на которой велись опыты, и методика исследований. Установлено, что коэффициент вытеснения малосмолистой нефти выше, чем смолистой из одного и того же пласта. [c.149] Для обеспечения большей нефтеотдачи при разработке нефтяных пластов с поддержанием пластового давления закачку воды в пласт следует вести так, чтобы высокосмолистая нефть вытеснялась малосмолистой, а последняя—водой. . [c.149] Установка для исследования движении жидкости через пористую среду при нжаких градиентах давления, Антипин Ю. В., Коробов К. Я. Труды УНИ, вып. V. Изд-во Недра , 1969. [c.149] Дается описание конструкции установки по фильтрации жидкости при низких градиентах давления и описание методики работы на этой установке. Данная установка позволяет исследовать вопросы процесса фильтрации при градиентах давления от 0,002 атм и выше. Погрешность определения конечных величин от 2 до 5%. Установка проста как конструктивно, так и в обслуживании и позволяет исследовать особенности процесса фильтрации при градиентах давления, соответствующих промысловым значениям. Результаты опытов, получаемые ва этой установке, могут быть использованы при проектировании и анализе разработки нефтяных месторождений. [c.149] Иллюстраций 1, библиография — 4 названия. [c.149]

Вернуться к основной статье

chem21.info

Экспериментальная установка для исследования процесса вытеснения нефти при термобарических условиях реальных пластов с использованием сверхкритических флюидных систем Текст научной статьи по специальности «Геология»

ПРОБЛЕМЫ НЕФТЕДОБЫЧИ, НЕФТЕХИМИИ, НЕФТЕПЕРЕРАБОТКИ И ПРИМЕНЕНИЯ НЕФТЕПРОДУКТОВ

УДК 533.1.

А. В. Радаев, Н. Р. Батраков, А. А. Мухамадиев, А. Н. Сабирзянов ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ДЛЯ ИССЛЕДОВАНИЯ ПРОЦЕССА ВЫТЕСНЕНИЯ НЕФТИ ПРИ ТЕРМОБАРИЧЕСКИХ УСЛОВИЯХ РЕАЛЬНЫХ ПЛАСТОВ С ИСПОЛЬЗОВАНИЕМ СВЕРХКРИТИЧЕСКИХ ФЛЮИДНЫХ СИСТЕМ

Ключевые слова: методы увеличения нефтеотдачи, сверхкритический флюид. method for

oil recovery, supercritical fluid.

Создана экспериментальная установка, позволяющая проводить исследование процесса вытеснения нефти при термобарических условиях реальных пластов сверхкритическими флюидами в интервале давлений до 25 МПа и температур до 473 К в широком интервале горно-геологических, физико-химических условий в пласте и режимных параметров вытесняющего агента. Разработана методика проведения опыта. Проведены пробные опыты по вытеснению нефти из модели пласта диоксидом углерода на изотерме 32 °С при давлении 5,5 МПа. Погрешность проведения эксперимента оценивается авторами в пределах 9,5 %. The experimental stend is created, allowing to carry out research of oil recovery process under thermobaric conditions of real benches using of supercritical fluids in the range ofpressure to 25 МРа and temperatures to 473 К and to a wide interval of mountain-geological, physical and chemical conditions in a bench and regime parameters of the displacement agent. The technique of carrying out of experience is developed. Trial experiences of oil recovery from benches model using of carbon dioxide are spent on an isotherm 32 0С under pressure 5,5 МРа. The error of carrying out of experiment is estimated by authors within 9,5 %.

Широко применяемая в нашей стране технология заводнения (около 90 % добываемой нефти приходится на этот метод) обеспечивает коэффициент извлечения нефти (КИН) в зависимости от условий добычи в пределах 16-20 %, что определяется пороговыми условиями применения данного метода (табл. 1).

Таблица 1 - Пороговые условия применимости метода заводнения

Параметры Пороговое значение

Наклон пласта Проницаемость Смачиваемость пород Нефтенасыщенность Температура Вязкость нефти 5 0 менее 5 о более 0,025 мкм гидрофильность более 50 % более 20 0С менее 25 мПа ■ с

При разработке месторождений трудноизвлекаемых запасов (высоковязкие нефти, высокообводненные, низкопроницаемые коллекторы) удовлетворение новым лицензионным требованиям (КИН более 25 %) предполагает применение современных третичных методов добычи. К таковым методам относятся сверхкритические флюидные технологии.

За рубежом преимущественное применение имеет сверхкритическое (СК) СО2-вытеснение. Несмотря на то, что в США, Канаде, Турции реализуется в настоящее время около 80 научно-производственных проектов с общим объемом добычи нефти более 200 тыс. баррелей в день [1], направленных на снижение себестоимости технологии, экспериментальные исследования в этой области являются актуальными, поскольку позволяют моделировать пластовые условия с учетом наиболее важных факторов: термобарических условий пластов, морфологических и физико-химических параметров породы, теплофизических свойств флюидов и пластовой нефти.

Созданная в настоящей работе экспериментальная установка (рис. 1) обеспечивает проведение исследований по физическому моделированию процесса вытеснения нефти с помощью сверхкритических флюидных систем на насыпных моделях пористых сред и образцах кернов при давлении до 25 МПа и температурах до 200 0С в широком интервале горно-геологических, физико-химических условий в пласте и режимных параметров вытесняющего агента. Установка состоит из следующих систем и узлов: модели пласта, системы поддержания и измерения давления в модели пласта, системы поддержания и измерения температуры в модели пласта, системы подачи и рециркуляции агента, системы измерения расхода газа, системы отбора проб и анализа, системы насыщения модели пласта нефтью.

Экспериментальная часть

Подготовка пористой среды.

В настоящей работе, используются насыпные модели пористых сред. Заданные значения коэффициентов проницаемости обеспечиваются путем подбора размера частиц стеклянного бисера, степени и способа его уплотнения. Для исключения проскальзывания вытесняющего агента на внутренней поверхности стенки кернодержателя выполнена винтовая нарезка шагом не более 0,8 мм.

Подготовка пористой среды заключается в промывке предварительно просеянного стеклянного бисера дистиллированной водой с последующей сушкой его в сушильном шкафу до постоянной массы.

Подготовка модели нефти осуществляется в соответствии с ОСТ 39-195-86, согласно которому нефть перед испытанием профильтровывается через образец пористой среды, проницаемость которой равняется средней проницаемости исследуемого образца. В качестве модели нефти в настоящей работе используется керосин осветленный марки КО-20 ГОСТ 18499-73, вязкость которого соответствует вязкости пластовой нефти, используемой в работе [2] и определяется в начале эксперимента с помощью вискозиметра Геплера по ГОСТ 33-82.

Заполнение кернодержателя, установленного в вертикальном положении, производится через снятый верхний фланец. Стеклянный бисер малыми порциями засыпается в кернодержатель, при этом осуществляется периодическое постукивание резиновым молотком по всей длине трубы для наиболее равномерного распределения породы по объему. По окончании набивки кернодержателя пористой средой, не изменяя положения трубы, на соответствующее место устанавливается линзовое уплотнение и производится сборка верхнего фланцевого соединения затяжкой восьми шпилек.

Работы по насыщению образцов пористых сред на установке выполняются с помощью системы насыщения (рис. 2) в следующей последовательности. Перед началом

Рис. 1 - Схема экспериментальной установки: 1 - компрессор мембранный; 2 - баллон промежуточный; 3 - баллон ресиверный; 4, 5, 7, 16, 17, 29, 39 - манометры образцовые; 6 - блок манометров; 8 - баллоны накопительные; 9 - 14, 22, 23, 27, 28, 30, 38 - вентили высокого давления; 15 - тройник; 18 - кернодержатель; 19 - термостат; 20,21 - гильза; 24 - сепаратор; 25 - сборник нефти; 26 - баллон приемный; 31 - весы электронные; 32 - насос вакуумный; 33 - сосуд разделительный; 34 - вентиль напускной; 35 - вентиль вакуумный; 36 - вентиль сливной; 37 - регулятор давления

Рис. 2 - Система насыщения модели пласта нефтью: 1 - баллон напорный; 2 - сосуд буферный; 3 - сосуд питательный; 4 - кернодержатель; 5 — сосуд разделительный; 6 - насос вакуумный; 7-12 - вентили

насыщения необходимо заправить буферный 2 и питательный 3 сосуды водой и модельной нефтью соответственно. В начальном положении все вентили закрыты. До начала насыщения включается вакуумный насос 6 и открывается вентиль 8 с целью осуществления предварительного вакуумирования пористой среды. При появлении нефти в разделительном сосуде 5 вакуумный насос 6 отключается, и пласт переводится в режим непрерывной фильтрации, осуществляющейся до прокачки нефти в количестве примерно двух поровых объемов пласта. После этого закрывается вентиль 8, и открываются вентили 9-12 и под небольшим перепадом давления, создаваемым напорным баллоном 1 с азотом, насыщение пористой среды нефтью продолжается.

Система в течение 2-3 ч находится под небольшим избыточным давлением. Затем открывается вентиль 8, и выпускаются газовые включения с небольшим количеством нефти. После этих операций вентиль 8 закрывается и открывается крайний штуцер, имеющийся на кернодержателе 18 (рис. 1), и повторяется операция насыщения среды под небольшим избыточным давлением. Последняя операция осуществляется для более полного и равномерно заполнения штуцеров и трубок, соединяющих модель пласта с образцовыми манометрами. В этом случае также прокачивается не менее 2 поровых объемов нефти. По окончании последней операции и выдерживании системы примерно в течение 12 часов процесс насыщения пористой среды нефтью считается законченным.

Необходимое в опытах рабочее давление устанавливается по манометру 4 с помощью регулятора давления 37 (рис. 1).

Перед началом эксперимента производится взвешивание газового баллона 1 на электронных весах 26 с погрешностью ±50 г. Необходимое в опытах значение температуры вытесняющего агента обеспечивается с помощью термостата 19. Такое же значение температуры кернодержателя 18 в опытах поддерживается с помощью регуляторов температуры.

По достижении давления в модели пласта необходимого уровня установка переводится в режим непрерывной фильтрации. При этом измеряется давление и температура по длине кернодержателя 18 с помощью образцовых манометров 5-7 и хромель-алюмелевых термопар соответственно (рис. 1). По окончании опыта открывается термостатируемый дроссельный вентиль 22, в котором происходит понижение давления и температуры потока газонефтяной смеси до субкритического значения. После этого открываются вентили 23 и 27, и газ из сепаратора 24 поступает в приемный баллон 26. Нефть, вытесняемая из пласта, накапливается в нефтесборнике 25.

При завершении эксперимента закрываются вентили 23, 27, 30 и 38. Отключается нагрев на дроссельном вентиле 22 и прекращается термостатирование кернодержателя 18, останавливается термостат 19 и сбрасывается давление в модели пласта. Приемный баллон отсоединяется от кернодержателя и взвешивается на электронных весах.

Определение объема вытесненной нефти также осуществляется весовым методом. Для этого отсоединяется вентиль 36, имеющийся в донной части нефтесборника 25, через который нефть поступает в мерную пробирку, которая взвешивается на аналитических весах с погрешностью ± 0,01 г.

Результаты пробных опытов

Методика проведения опыта, предложенная в настоящей работе, основана на уравнении материального баланса для потока в кернодержателе 18.

На основании взвешивания ресиверного баллона 3 до и после опыта, массы нефти и газа в приемном баллоне 26 и нефти в нефтесборнике 25 составляется материальный баланс процесса вытеснения нефти по каждому компоненту в отдельности.

Уравнение материального баланса по диоксиду углерода выглядит следующим образом:

МСо2 - МСо2 = АтС02 + тСо2 + тСо2, (1)

где МСо2 - масса баллона с СО2 до опыта; мСС0 - масса баллона с СО2 после опыта; ДтС0г - масса газа в пласте; тС02 - масса газа в нефтесборнике; тС02 - масса газа в

приемном баллоне;

По нефти уравнение материального баланса выглядит следующим образом:

Мн = ДМн + тН + тЦ, (2)

где Мн - исходная масса нефти; ДМ( - масса нефти в пласте; т| - масса нефти в

приемном баллоне; т|' - масса нефти в нефтесборнике.

При составлении материальных балансов принимается, что газ накапливается только в приемном баллоне. Это предположение подтверждается экспериментально в пределах погрешности эксперимента отсутствием газа в нефтесборнике по окончании опыта.

Это позволяет определить коэффициент извлечения нефти (п) по формуле

п =

тН + тН

Ми

(3)

На экспериментальной установке проведены пробные опыты по определению зависимости КИН от объема нагнетаемого в пласт СО2, на изотерме 32 0С при давлении 5,5 МПа, пористости 36,4 %, проницаемости пласта 530 мкм2. Результаты пробных опытов представлены на рис. 3.

Рис. 3 - Зависимость КИН от объема нагнетаемого диоксида углерода на изотерме 32 С. 1 - [2]; 2 - настоящая работа

Максимальное отклонение опытных данных, полученных в настоящей работе, от приведенных в работе [1] не превышает 12 %. Наблюдаемое согласие указывает на надежность выбранной методики проведения эксперимента и корректность выбора модели нефти.

Выводы

1. Создана экспериментальная установка для исследования процесса вытеснения нефти при термобарических условиях реальных пластов с использованием сверхкритических флюидов. Погрешность оценивается в пределах 9,5 %.

2. Разработана методика проведения опытов в широком интервале термобарических условий проведения эксперимента, горно-геологических, физикохимических условий в пласте и режимных параметров вытесняющего агента.

3. Достигнутые для коллектора с проницаемостью 530 мкм значения КИН около 55 % превосходят аналогичные показатели традиционных методов нефтедобычи и более чем в два раза превышают лицензионные требования.

Литература

1. Tzimas, E. Enhanced oil recovery using carbon dioxide in the European energy system / E. Tzimas, C. Georgakaki, G. Cortes // (ie.jrc.ec.europa.eu/downloads/file.php?id=23).

2. Orr, F.M. Carbon dioxide flooding for enchanced oil recovery: promise and problems // F. M. Orr, J.P. Heller, J.J. Tuber // JACCS. - 1982. - № 10. - Vol. 59. - P. 810-817.

© А. В. Радаев - асс. каф. теоретических основ теплотехники КГТУ; Н. Р. Батраков - асп. той же кафедры; А. А. Мухамадиев - канд. техн. наук, доц. той же кафедры; А. Н. Сабирзянов - д-р техн. наук, проф. той же кафедры. E-mail:[email protected]

cyberleninka.ru

Исследование - нефтяная скважина - Большая Энциклопедия Нефти и Газа, статья, страница 1

Исследование - нефтяная скважина

Cтраница 1

Исследование нефтяных скважин на приток имеет большое значение, так как позволяет установить правильный технологический режим работы эксплуатационной скважины и величину проницаемости пласта.  [1]

По данным исследования нефтяной скважины на приток построена криволинейная индикаторная диаграмма.  [2]

Предназначен для исследования действующих нефтяных скважин, оборудованных насосно-компрессорными трубами диаметром 50 и 65 мм и обсаженных трубами диаметром 100 и 175 мм, с целью построения профиля притока и определения дебита отдельных продуктивных пластов и обводненных интервалов.  [3]

Разрабатываемые методы исследования нефтяных скважин не рассматриваются изолированно, все они объединяются в комплекс для однозначной, надежной, количественной интерпретации материалов. Для этой цели разработаны пакеты программ, предназначенных для интерпретации в различных ге-ологотехнических условиях. В Башкирии, во ВНИИГИС ( вместе с ВНИИГе-офизикой) были созданы первые программы для ЭВМ, широко применявшиеся при интерпретации каротажа. Они входили в известные системы интерпретации, как ГИК, Каротаж, АСОИГИС-ОС и другие. Заслуги в этой области также позволили организовать на базе ВЦ ВНИИГИС отраслевой фонд алгоритмов и программ, который функционировал до 90 - х годов. И в настоящее время хорошо известны программы интерпретации комплексов ГИС при оценке пористости, компонентного состава пород, электрических параметров среды и нефтегазонасыщенности.  [4]

В практике исследований газовых, газоконденсатных и нефтяных скважин широко используются газогидродинамические методы, которые обобщены и рекомендованы в качестве инструкций по технологии проведения исследования и обработке полученных результатов. При интерпретации результатов исследования газовых и нефтяных скважин допускается, что в пласте имеет место однофазная фильтрация только газа или только нефти. На практике часто встречаются случаи, когда к скважине одновременно притекают и жидкость и газ. Это связано с обводнением газовых скважин, выпадением и выносом вместе с газом конденсата, образованием конуса нефти из нефтяной оторочки, а также с прорывом газа через вскрытый нефтенасыщенный интервал. В связи с открытием многочисленных маломощных газонефтяных месторождений возможности одновременного отбора нефти и газа, а в ряде случаев нефти, газа и воды резко увеличились. Поэтому в процессе исследования и эксплуатации скважин, вскрывших маломощные газонефтяные пласты, независимо от того, что вскрыто - только газоносный или только нефтеносный интервал, а также одновременно газонефтенасыщенный интервал, в целом происходит быстрое подтягивание конуса воды либо нефти или прорыв газа. Неизбежность одновременного отбора газа и жидкости в результате прорыва газа или образования конуса жидкости требует создания метода исследования таких скважин. В настоящее время одновременный приток газа и жидкости к скважине изучен недостаточно, и поэтому простые и точные методы, приемлемые на практике для определения параметров пласта без проведения специальных исследований, отсутствуют. Сложность задачи одновременного притока газа и жидкости связана с изменением фильтрационных параметров газонефтенасыщен-ных интервалов, к которым относятся: деформация границы раздела газ-жидкость; газонефтенасыщенность газо - и нефтеносного интервалов пласта; относительные проницаемости фаз во времени и по радиусу дренирования; различие физических свойств и законов фильтрации газа и жидкости.  [5]

Если при исследовании нефтяных скважин замеряют изменение забойного давления, то при исследовании водяных скважин иногда предполагают, что характер изменения давления на забое и на устье одинаков. Такое допущение возможно при постоянстве плотности жидкости по стволу скважины и при пренебрежении потерями на трение. Допущение относительно постоянства плотности жидкости по стволу работающей скважины позволило разработать специальные методы исследования водяных скважин на самоизлив. Сущность их заключается в следующем. Водяная скважина пускается на самоизлив. Предполагается, что забойное давление при пуске скважины на самоизлив мгновенно изменяется на величину избыточного давления и остается постоянным во времени.  [6]

Опыт совершенствования методов исследования нефтяных скважин и пластов.  [7]

Результаты опытных работ по исследованию нефтяных скважин свидетельствуют о возможности контроля за характером отработки высокотемпературных продуктивных пластов с помощью описанных выше приборов. Однако получение только качественной характеристики работы пласта значительно снижает возможности использования этих приборов для решения вопросов отработки отдельных пропластков.  [8]

Для решения задач по исследованию нефтяных скважин с целью детального изучения строения залежи, контроля за разработкой и проверки соответствия параметров работы скважины установленным технологическим режимам при эксплуатации скважин проводятся гидродинамические, геофизические и лабораторные исследования.  [9]

Первые попытки применения глубинных дебитомеров для исследования нефтяных скважин были сделаны в середине 40 - х годов.  [10]

Преобразователь Кобра - ЗбРВ предназначен для исследования нефтяных скважин с целью построения профиля притока и определения дебита отдельных продуктивных пластов и обводненных интервалов.  [12]

Передвижная сепарационная установка, предназначенная для исследования нефтяных скважин монтируется на автоприцепе, s Основной сепарирующий элемент гидроциклонных сепараторов - однотонный гидроциклоп типа ОГ ( см. рис. 4.6, табл. 4.2) который устанавливают внутри аппарата или снаружи.  [14]

Страницы:      1    2    3

www.ngpedia.ru