Установка первичной переработки нефти (стр. 7 из 8). Установка первичной переработки нефти


Установка первичной переработки нефти - часть 3

В отбензинивающей колонне К-1 дистиллятом будут являться растворенные газы С2 -С4 и фракция нк-140 0 С – нестабильный бензин, который направляем на блок стабилизации в колонну К-3 для извлечения из нестабильного бензина растворенных газов. Это позволяет полностью удалить газы из жидкой фазы уже на входе в колонну К-2 вследствие чего колонна работает при более низком давлении температуре. Уменьшается металлоемкость и стоимость оборудования, затраты на нагрев сырья. Кроме того, в колонне К-1 наряду с газами С2 - С4 удаляются солёная вода и коррозионно-активные газы, что благоприятно влияет на сохранность последующего ректификационного и теплообменного оборудования.

В колоннах К-1 и К-2 устанавлаваем клапанные тарелки, которые эффективно работают в широком интервале нагрузок.

В основной атмосферной колонне К-2 дистиллятом будет являться фракция нк-140о С; фракции 140-180 0 С, 180-230°С и 230-360°С выводятся боковыми продуктами в жидком виде, снизу колонны выводится мазут (>360°С). Фракцию нк-140о С объединяем с продуктом колонны К-1 и направляем на блок стабилизации. Фракцию 180-230°С можем использовать после гидроочистки как компонент зимнего ДТ или в смеси с фракцией 230-360°С как летнее дизельное топливо – в этом случае фракции объединяем после блока теплообменников. Для четкости разделения фракций применяем стриппинги.

Данная схема, в случае необходимости, позволяет получать керосиновую фракцию (140-180 0 С+180-230°С), что положительно сказывается на возможном ассортименте нефтепродуктов.

В низ колонны подается водяной пар в количестве 1% на отбензиненную нефть. Для отвода тепла в основной атмосферной колонне К-2 применяем три циркуляционных (верхнее, среднее и нижнее) орошения, теплоту которых используем для подогрева сырой нефти.

3.2.2. Блок стабилизации и чёткой ректификации.

Стабилизации подвергаем бензин из К-1 и фракцию нк-140о С сверху К-2. Согласно рекомендациям [18] блок стабилизации оснащается стабилизатором и несколькими простыми ректификационными колонами числом на единицу меньшим, чем количество выводимых фракций. В нашем случае – одна колонна четкой ректификации, что соответствует заданию. В колонне К-3 производим разделение нестабильного бензина на газ и бензин. Температура в низу стабилизационной колонны поддерживается за счет циркуляции через испаритель нижнего продукта, что позволяет отказаться от печи и снизить расход топлива и выбросы дымовых газов. Стабильный бензин из куба колонны стабилизации отправляется в колонну чёткой ректификации К-4 с целью получения сырья процессов изомеризации (нк-70о С) и каталитического риформинга (70-140о С).

Рис. 3.2. Блок стабилизации бензина.

Из-за отсутствия в нефти растворенного метана и малого количества этана получить сухой газ практически невозможно. Поэтому в емкости орошения получаем сухой газ с содержанием пропана до 7 %, который подаем в качестве топлива в технологические печи установки и рефлюкс.

3.2.3. Вакуумный блок.

На практике существует два основных варианта получения широкой масляной фракции.

1. Тарельчатая ректификационная колонна.

2. Вакуумная колонна с высокоэффективной насадкой.

Рис. 3.3. Вакуумный блок.

За основу принимаем второй вариант, так как насадка является более эффективным контактным устройством и обладает малым гидравлическим сопротивлением. Из-за того, что получать базовые масла из вакуумных дистиллятов нецелесообразно, из колонны выводим два боковых погона и вакуумный газойль. Затемненный продукт используем для подогрева низа колонны в качестве «горячей струи». Теплоту вакуумных дистиллятов используем для подогрева сырой нефти.

Для получения остаточного давления в колонне 4-6 кПа, применяем вакуумсоздающую систему, которая состоит из трёх ступеней паровых эжекторов и поверхностных конденсаторов [18] (одна ступень обеспечивает остаточное давление около 13кПа, две – 7-8кПа).

Над вводом сырья и вводом верхнего циркуляционного орошения устанавливаем отбойные тарелки для предотвращения уноса капель жидкости.

3.3. Блок теплообменников

Схема теплообмена на установке должна обеспечивать подогрев нефти до температуры не менее 245 єС. Основой расчета схемы теплообмена является температура теплоносителей и их расход. В таблице 3.1 представлена характеристика теплоносителей, которые получаются на АВТ. Температура теплоносителей принята на основе литературных и практических данных по установкам АВТ на ОАО «Нафтан» и МНПЗ. Расходы – на основании материального баланса (п. 5)

Таблица 3.1. - Характеристика теплоносителей

Расчет схемы теплообмена до электродегидраторов:

1-й поток

Т-101:

∆ tн =(150-50)∙5/50=10 єC

10+10=200 С

Т-102:

∆ tн =(125-70)∙21,5/50=24 єC

20+24=44 єC

Т-103:

∆ tн =(145-120)∙18,0/50=9 єC

44+9=53 єC

Т-104:

∆ tн =(155-100)∙12,5/50=14 єС

53+14=67 єС

Т-105:

∆ tн =(230-170)∙37,54/50=51 єС

67+51=118 єС

2-ой поток

Т-201:

∆ tн =(150-50)∙5/50=10 єC

10+10=200 С

Т-202:

∆ tн =(125-70)∙21,5/50=24 єC

20+24=44 єC

Т-203:

∆ tн =(200-65)∙5,9/50=16 єC

44+16=60 єC

Т-204:

∆ tн =(255-110)∙16,13/50=47 єС

60+47=107 єС

Потоки объединяем и с температурой 113,5 о С направляем в электродегидраторы.

Расчет схемы теплообмена после электродегидраторов

1-й поток

Т-106:

∆ tн =(170-125)∙21,5/50=19 єС

105+19=124 єС

Т-107:

∆ tн =(220-145)∙9,0/50=14 єС

124+14=138 єС

Т-108:

∆ tн =(260-155)∙6,25/50=13 єС

138+13=151 єС

Т-109:

∆ tн =(270-180)∙12,5/50=23 єС

151+23=174 єС

Т-110:

∆ tн =(330-230)∙0,78∙11/50=17 єС

174+17=191 єС

Т-111:

∆ tн =(320-230)∙0,78∙16,0/50=22 єС

191+22=213 єС

Т-112:

∆ tн =(320-240)∙0,78∙10,55/50=13 єС

213+13=226 єС

Т-113:

∆ tн =(340-250)∙0,78∙18,77/50=26 єС

226+26=252 єС

2-ой поток

Т205:

∆ tн =(170-125)∙21,5/50=19 єС

105+19=124 єС

Т-206:

∆ tн =(220-145)∙9,0/50=14 єС

124+14=138 єС

Т-207:

∆ tн =(260-155)∙6,25/50=13 єС

138+13=151 єС

Т-208:

∆ tн =(270-180)∙12,5/50=23 єС

151+23=174 єС

Т-209:

∆ tн =(250-230)∙0,78∙34,54/50=11 єС

174+11=185 єС

Т-210:

∆ tн =(320-220)∙0,78∙16,0/50=25 єС

185+25=210 єС

Т-211

∆ tн =(320-255)∙0,78∙16,13/50=16 єС

210+16=226 єС

Т-212

∆ tн =(340-250)∙0,78∙18,77/50=16 єС

226+16=252 єС

Потоки объединяем и с температурой 252 о С направляем в колонну К-1.

Тепло теплоносителей с температурой выше 100о С можем использовать для выработки водяного пара или подогрева бензина на блоке стабилизации.

Рис. 3.4. Схема подогрева нефти до электродегидраторов.

Рис. 3.5. Схема подогрева нефти после электродегидраторов.

4. Расчёт количества и состава паровой и жидкой фаз в ёмкости орошения отбензинивающей колонны (ЭВМ)

В ёмкость орошения К-1 поступают лёгкий бензин и углеводородные газы. В состав бензина входит 100% фракции н.к.-105о С от её потенциала содержания в нефти и 40% фракции 105-140о С – 0,036∙0,4=0,0144 (табл. 1.2).

Количество углеводородных газов равно их содержанию в нефти 1,0 %(масс.) на нефть. Для расчета состава и количества газа и бензина в емкости орошения зададимся давлением, температурой, кратностью орошения и составом смеси, поступающей в емкость орошения. Состав смеси зависит от количества компонентов, находящихся в исходной нефти и в орошении колонны.

Принимаем следующие данные: температура в емкости орошения равна 30°С; давление в емкости орошения обычно на 50 кПа ниже, чем давление на верху К-1 из-за гидравлического сопротивления трубопроводов и холодильников-конденсаторов, и равна 250кПа; кратность орошения равна 2.

Состав смеси на входе в емкость орошения представлен в таблице 4.1.

Таблица 4.1Состав смеси на входе в емкость орошения

Результаты расчета состава и количества газа и бензина в емкости орошения отбензинивающей колонны представлены в таблицах 4.2 – 4.5.

mirznanii.com

Установка первичной переработки нефти - часть 7

Где Gп – объемный расход паров, м3 /с

Vл - допустимая линейная скорость паров, м/с.

Для расчета диаметра ректификационной колонны необходимо определить объемный расход паров (м3 /с) в тех сечениях колонны где они образуются.

Объемный расход паров [15]:

Gп = 22,4∙Т∙0,101∙∑ (Gi /Мi )/(273∙Р)/3600,

где Т – температура системы, К;

Р – давление в системе, МПа;

Gi – расход компонента, кг/ч;

Мi – молекулярная масса компонента кг/кмоль.

Определение объемного расхода паров в точке ввода сырья:

Температура в точке ввода сырья 1400 С

Давление в точке ввода сырья 350 кПа

Расход паров 16890 кг/ч

Молекулярная масса паров 88,99 кг/кмоль

Тогда объёмный расход паров:

Gп =22,4∙(140+273)∙0,101∙(16890/(3600∙88,99))/(273∙0,350)=0,516 м3 /с,

Определение объемного расхода паров в точке ввода горячей струи:

Температура в точке ввода горячей струи 2000 С

Давление в точке ввода горячей струи 356 кПа

Расход паров 10756 кг/ч (табл. 7.3)

Молекулярная масса паров 100,6 кг/кмоль

Тогда объёмный расход паров:

Gп =22,4∙(200+273)∙0,101∙(10756/(3600∙100,6))/(273∙0,356)=0,327 м3 /с,

Определение объемного расхода паров в точке вывода паров дистиллята:

Температура в точке вывода паров дистиллята 93,50 С

Давление в точке вывода паров дистиллята 341 кПа

Расход паров: фр нк-70о С+орошение 7500+15000=22500 кг/ч (табл. 7.3).

Молекулярная масса паров 76,5 кг/кмоль

Тогда объёмный расход паров:

Gп =22,4∙(93,5+273)∙0,101∙(22500/(3600∙76,5))/(273∙0,341)=0,73 м3 /с,

Дальнейшее определение диаметра производим по максимальному расходу паров т.е. Gп =0,73 м3 /с.

Допустимая линейная скорость паров [15]:

Vл = (0,305*С*Ö(ρж – ρп )/ ρп )/3600,

где С – коэффициент, зависящий от расстояния между тарелками и условий ректификации; С=300 [15];

ρж , ρп – абсолютная плотность соответственно жидкости и паров, кг/м3 .

а) Плотность жидкой фазы

r1515 = 1,03∙М/(44,29+М),

где М – молярная масса паровой фазы, кг/кмоль.

r1515 = 1,03∙76,6/(44,29+76,6)=0,6526

r493,5 =r1515 -(93,5-15)∙a=0,6526-93∙0,000962= 0,5771

rж(93,5°С) = 577,1 кг/м3

б) Плотность паровой фазы

rп =rо ∙Т0 ∙Р/(Т∙Р0 ) [15],

где rо – плотность пара при нормальных условиях, кг/м3

rп =76,6∙273∙0,341/(22,4∙381∙0,101)=0,86 кг/м3

Получаем,

Vл = 0,305∙300∙Ö((577,1-0,86) / 0,86) /3600=0,66 м/с

Соответственно диаметр колонны равен:

D =

По ГОСТ 21944-76 принимаем диаметр 1,3 м.

7.7 Расчет высоты колонны

Рис. 6. К расчету высоты колонны четкой ректификации.

h2 = ЅD=Ѕ∙1,3=0,65 м

h3 =(nв -1)∙hт =(36-1)∙0,25=8,75 м

h4 = hт ∙3=0,25∙3=0,75 м

h5 =(nн -1)∙ hт =(24-1)∙0,25=5,75 м

h5 =1,5 м

Высоту слоя жидкости в нижней части колонны рассчитывают по её запасу на 10 минуты, необходимому для обеспечения нормальной работы насоса. Принимая запас на 600 с, объем кубового остатка с учётом расхода горячей струи составит:

V=(Gк +Gгс )∙600/3600r

Где r - плотность кубового остатка при температуре внизу колонны, кг/м3 :

r=(0,7151-0,000884∙(154-15))∙1000=679,7 кг/м3

тогда

V=(24286+5621)∙600/(3600∙679,7)=7,33 м3

Площадь поперечного сечения колонны:

S=pD2 /4=0,785∙1,32 =1,33 м2

тогда

h6 =V/S=7,33/1,33=5,6 м.

Высоту юбки h7 принимают, исходя из практических данных, равной 4 м.

Общая высота колонны составляет:

H=h2 + h3 + h4 + h5 + h5 + h6 + h7 =0,65+8,75+0,75+5,75+1,5+5,6+4=27,00 м

8 Расчет полезной тепловой нагрузки печи атмосферного блока

Печь атмосферного блока для нагрева и частичного испарения отбензиненной нефти подаваемой в колонну К-2 и «горячей струи» для подогрева низа колонны К-1. В расчете используем доли отгона, найденные с помощью ПЭВМ. Количество теплоты Qпол. (кВт), затрачиваемой на нагрев и частичное испарение отбензиненной нефти, определяется по формуле [12]:

Qпол. =Gc ∙(е∙Нt2п +(1-е)∙ Нt2ж - Нt1ж )/3600,

где Gс – расход сырья, кг/ч;

е – массовая доля отгона отбензиненной нефти на выходе из печи;

Нt1ж , Нt2ж , Нt2п – энтальпия жидкой и паровой фаз отбензиненной нефти при температурах на входе (t1 ) и выходе (t2 ) из печи, кДж/кг.

Зададимся следующими данными для расчета:

- температура нефти на входе в печь- 260 о С;

- температура выхода «горячей струи» в К-1 – 330 о С;

- температура выхода нефти в К-2 – 360 о С;

- давление в колонне К-1 – 350 кПа;

- давление в колонне К-2 – 150 кПа;

- расход «горячей струи» в К-1 (30% на сырье) – 329500∙0,3=98850 кг/ч;

Таблица 8.1. - Для нахождения доли отгона в печи атмосферного блока

Найденные доли отгона:

Поток в К-1

Peзультaты pacчeтa:

Мaccoвaя дoля oтгoнa пapoв e1= .1237363666296005

Мoльнaя дoля oтгoнa пapoв e= .2630500495433807

Мoлeкуляpнaя мacca иcxoднoй cмecи Mi= 326.7590942382812

Мoлeкуляpнaя мacca жидкoй фaзы Ml= 388.5292358398438

Мoлeкуляpнaя мacca пapoвoй фaзы Mp= 153.7045288085938

- энтальпия паровой фазы отбензиненной нефти на выходе из печи в колонну К-1 (3300 С):

r1515 =1,03∙М/(44,29+М)=1,03∙154/(44,29+154)=0,7999;

Нп =b∙(4 - r1515 ) – 308,99=425,15∙(4 – 0,7999) – 308,99=1051,52 кДж/кг;

- энтальпия жидкой фазы отбензиненной нефти на выходе из печи в колонну К-2 (3300 С):

r1515 =1,03∙М/(44,29+М)=1,03∙339/(44,29+339)=0,9110;

Нж =а/(r1515 )0,5 =742,00/0,91100,5 =777,40 кДж/кг

- энтальпия жидкой фазы отбензиненной нефти на входе в печь при температуре 2600 С (температура куба колонны К-1):

=0,9752+0,00270=0,9779

Нж =а/(r1515 )0,5 =533,75/0,97790,5 =539,75 кДж/кг

Qпол. К-1 = 98850∙(0,124∙1051,52+(1-0,124)∙777,40-539,75)=26,852∙106 кДж

Поток в К-2

Peзультaты pacчeтa:

Maccoвaя дoля oтгoнa пapoв e1= .3821409940719604

Moльнaя дoля oтгoнa пapoв e= .6407902240753174

Moлeкуляpнaя мacca иcxoднoй cмecи Mi= 326.7590637207031

Moлeкуляpнaя мacca жидкoй фaзы Ml= 562.0350952148438

Moлeкуляpнaя мacca пapoвoй фaзы Mp= 194.8656921386719

- энтальпия паровой фазы отбензиненной нефти на выходе из печи в колонну К-2 (3600 С):

r1515 =1,03∙М/(44,29+М)=1,03∙195/(44,29+195)=0,8394;

Нп =b∙(4 - r1515 ) – 308,99=450,76∙(4 – 0,8394) – 308,99=1115,70 кДж/кг

- энтальпия жидкой фазы отбензиненной нефти на выходе из печи в колонну К-2 (3600 С):

r1515 =1,03∙М/(44,29+М)=1,03∙562/(44,29+562)=0,9548;

Нж =а/(r1515 )0,5 =827,81/0,95480,5 =847,20 кДж/кг

- энтальпия жидкой фазы отбензиненной нефти на входе в печь при температуре 2600 С (температура куба колонны К-1):

=0,9752+0,00270=0,9779

Нж =а/(r1515 )0,5 =533,75/0,97790,5 =539,75 кДж/кг

Qпол.К-2 = 329500∙(0,382∙1115,70+(1-0,382)∙847,20-539,75)=135,101∙106 кДж

Теплопроизводительность трубчатой печи (Qп , МВт) определяется по уравнению [12]:

Qп = (Qпол.К-1 + Qпол.К-2 )/η,

где η – КПД печи, равное 0,85 [12].

Qп =(26,852+135,101)∙106 /(3600∙0,85)=52926 кВт

9 РАСЧЕТ КОЭФФИЦИЕНТА ТЕПЛОПЕРЕДАЧИ (ЭВМ)

В ТЕПЛООБМЕННИКЕ «НЕФТЬ-ДТ»

Произведём расчёт коэффициента теплопередачи теплообменника Т-204 с помощью программы “Ktepper”. Для этого на основании количества и свойств нефти и ДТ подготовим исходные данные для расчёта.

Расход теплоносителей:

Gн =357143∙0,5=178571,5 кг/ч — расход нефти, теплоноситель 1.

Gдт =357143∙0,1613=57607 кг/ч — расход ДТ через теплообменник по одному потоку, теплоноситель 2;

Средние температуры теплоносителей:

Физические свойства теплоносителей:

– относительные плотности нефти:

- относительные плотности ДТ:

определим кинематические вязкости:

и — для нефти, тогда можно составить систему уравнений из формулы и определить A и B.

отсюда

.

mirznanii.com

Установка первичной переработки нефти - часть 8

и — для ДТ, тогда можно составить систему уравнений из формулы и определить A и B.

отсюда

.

Принимаем кожухотрубчатый теплообменник в соответствии с ГОСТ 15122–79 [13]. Заносим необходимые данные в таблицу 9.1.

таблица 9.1 исходные данные для расчёта коэффициента теплопередачи

Результаты расчёта теплообменника по программе “Ktepper” представлены в таблице 9.2.

таблица 9.2 - Результаты расчёта теплообменника

----------------------------------------------------------------

Показатели ! Пространство

!---------------------------------------

! Трубное ! Межтрубное

----------------------------------------------------------------

Скорость потока,м/с ! 1.208945751190186 ! 1.387560606002808

Коэф-т теплоотдачи, ! 1964.802124023438 ! 64.82077026367188

Вт/м^2*К !

Коэф-т теплопередачи ! 57.3052864074707

Вт/м^2*К !

----------------------------------------------------------------

11 ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ НА УСТАНОВКЕ

На современном этапе развития производства все большее применение находит принцип «от техники безопасности к безопасной технике». Если раньше обеспечение безопасности работающих сводилось к применению предохранительных устройств и защитных приспособлений, то теперь основным направлением охраны труда является создание таких процессов и оборудования, в которых практически исключается возникновение опасностей и вредностей. Энергонасыщенность современных объектов стала огромной. Постоянно интенсифицируются технологии, вследствие этого такие параметры, как температура, давление, содержание опасных веществ, растут и приближаются к критическим. Растут единичные мощности аппаратов, количества находящихся в них веществ. Номенклатура выпуска нефтеперерабатывающего или нефтехимического заводов с передовой технологией, обеспечивающей комплексную переработку сырья, стала состоять из тысяч позиций, причем многие из изготавливаемых продуктов взрыво-, пожароопасные и (или) токсичны. Успешное решение экологических проблем в значительной степени зависит от рационального проектирования и совершенствования таких технологических процессов, как системы факельного хозяйства, каталитического обезвреживания газовых выбросов и очистки производственных сточных вод [1].

Степень загрязнения атмосферного воздуха зависит также от высоты выброса. При ветровом потоке воздуха, направленном на здание, над крышей и за зданием создаётся область пониженного давления (зона аэродинамической тени). Внутри этой зоны возникает циркуляция воздуха, в результате которой в зону вовлекается пыль и газовые выбросы. Поэтому все организованные выбросы должны направляться выше той зоны. При этом приземные концентрации вредных веществ могут быть уменьшены до 6 раз [2].

Для уменьшения выбросов углеводородов необходимо постоянно контролировать герметичность аппаратов, резервуаров, фланцевых соединений и т.д. особое внимание необходимо уделить резервуарам для хранения нефтепродуктов.

Плавающие понтоны предназначены для резервуаров со щитовым или сферическим покрытием с целью снижения потерь хранящихся в них легкоиспаряющихся нефтей и нефтепродуктов. Понтон, плавающий на поверхности жидкости, уменьшает площадь испарения по сравнению с обычным резервуаром, благодаря чему резко снижаются (в 4-5 раз) потери от испарения. Понтон представляет собой диск с поплавками, обеспечивающими его плавучесть. Между понтоном и стенкой резервуара оставляется зазор шириной 100-300 мм во избежание заклинивания понтона вследствие неровностей стенки. Зазор перекрывается уплотняющими герметизирующими затворами. Известны несколько конструкций затворов, однако наибольшее применение имеет затвор из прорезиненной ткани, профили которой имеют форму петли с внутренним заполнением затвора (петли) упругим материалом. Герметизирующий затвор является неотъемлемой частью понтона. Без затвора работа понтона мало эффективна [1].

ЗАКЛЮЧЕНИЕ

В результате выполнения данного курсового проекта была разработана схема установки АВТ мощностью 3 млн.т/г Девонской нефти. Приведёны расчёты: состава паровой и жидкой фаз в емкости орошения отбензинивающей колонны, колонны четкой ректификации бензина, тепловой нагрузки печи атмосферного блока, теплообменника, материального баланса установки. На данной установке получаем продукты согласно задания.

Список литературы

[1] Хорошко С.И., Хорошко А.Н. Нефти северных регионов. Справочник. – Новополоцк, 2004. – 126 с.

[2] Танатаров М.А., Ахметшина М.Н., Фасхутдинов Р.А. и др. Технологические расчёты установок переработки нефти. – М.: Химия, 1987. – 352 с.

[3] Корж А.Ф., Хорошко С.И. Установка первичной переработки нефти. Методические указания к выполнению курсового проекта № 1 по курсу «Технология переработки нефти и газа» для студентов специальности Т.15.02. – Новополоцк, ПГУ: 2000.

[4] Богомолов А.И., Гайле А.А., Громова В.В. и др. Химия нефти и газа. – СПб.: Химия, 1995.–448 с.

[5] Альбом технологических схем процессов переработки нефти и газа./ под ред. Б.И. Бондаренко. –М.: Химия, 1983. – 128 с.

[6] Рудин М. Г., Драбкин А. Е. Краткий справочник нефтепереработчика.– Л.: Химия, 1980. – 328 с.

[7] Поникаров И.И., Перелыгин О.А., Доронин В.Н., Гайнулин М.Г. Машины и аппараты химических производств.– М.: Машиностроение, 1989.–368 с.

[8] Гуревич И.Л. Технология переработки нефти и газа. Часть 1. – М.: Химия, 1972.–360 с.

[9] Эмирджанов Р. Т., Лемберанский Р. А. Основы технологических расчётов в нефтепереработке и нефтехимии. – М.: Химия, 1989. – 192 с.

[10] Сарданашвили А.Г., Львова А.И. Примеры и задачи по технологии переработки нефти и газа.– М.: Химия, 1980. – 256 с.

[11] Кузнецов А.А., Кагерманов С.М., Судаков Е.Н. Расчёты процессов и аппаратов нефтеперерабатывающей промышленности. –Л., Химия, 1974. –334 с.

[12] Основные процессы и аппараты химической технологии: Пособие по проектированию/ Под ред. Ю. И. Дытнерского. – М.: Химия, 1983. – 272 с.

[13] Левченко Д.Н. и др. Технология обессоливания нефтей на нефтеперерабатывающих предприятиях. – М.: Химия, 1985. – 186 с., ил.

[14] Абросимов А.А. Экологические аспекты производства и применения нефтепродуктов.– М.: ВАС, 1999.–731с.

[15] Хорошко С.И., Хорошко А.Н. Сборник задач по химии и технологии нефти и газа. – Мн.: Вышэйшая школа, 1989. – 122 с.

[16] Томин В.П., Корчевин Н.А. и др. Ингибитор коррозии для защиты оборудования. – ХТТМ, № 3: 2000.

[17] Эмирджанов Р.Т., Лемберанский Р.А. Основы технологических расчетов в нефтепереработке и нефтехимии. – М.: Химия, 1989. – 191с.

[18] Стандартные кожухотрубчатые теплообменные аппараты общего назначения. Каталог.-М.:ЦИНТИХИМНЕФТЕМАШ 1988.-39с.

[19] Основные процессы и аппараты химической технологии. Пособие по проектированию. Под ред. Ю.И. Дытнерского, М.: Химия,1991-496с

mirznanii.com

Установка первичной переработки нефти - часть 4

Пpoгpaммa << OIL >>

Pacчeт пpoцecca oднoкpaтнoгo иcпapeния

Pacxoд нeфти или фpaкции G= 82929 Kг/чac

Pacxoд вoдянoгo пapa Z= 0 Kг/чac

Плoтнocть ocтaткa P19= 975.2000122070312 Kг/M^3

Дaвлeниe пpи oднoкpaктнoм иcпapeнии P= 250 KПa

Teмпepaтуpa oднoкpaтнoгo иcпapeния T= 30 ^C

Peзультaты pacчeтa:

Maccoвaя дoля oтгoнa пapoв e1= 3.992608981207013E-006

Moльнaя дoля oтгoнa пapoв e= 9.99999883788405E-006

Moлeкуляpнaя мacca иcxoднoй cмecи Mi= 80.63008880615234

Moлeкуляpнaя мacca жидкoй фaзы Ml= 80.63030242919922

Moлeкуляpнaя мacca пapoвoй фaзы Mp= 32.19244384765625

По формуле (2.3) находим минимальное давление смеси, при котором эта смесь находится в жидком состоянии

р= S рн i xi / £ ре

где р – давление, при котором данная смесь находится в жидком состоянии, кПа;

ре – давление в емкости орошения, кПа;

рн i – давление насыщенных паров i-компонента смеси при температуре в емкости орошения (~30°С), кПа;

xi / – молярная доля i-компонента смеси.

S рн i xi =

99,8кПа

Следовательно, в емкости орошения получается только жидкая фаза – нестабильный бензин.

Результаты расчёта показывают, что, при выбранных условиях в ёмкости орошения отбензинивающей колонны, пары переходят в жидкую фазу.

5 Расчёт материального баланса ректификационных колон

иустановки в целом

Все расчёты проводятся на основании таблиц приведённых в разделе 1.

5.1 Материальный баланс отбензинивающей колонны К-1

В отбензинивающую колонну приходит обессоленная и обезвоженная нефть в количестве Gн =3000000∙1000/(350∙24)=357143 кг/ч

фракцию газ + н.к.-140°С составляет газ, н.к.-85°С, 85-105°С и 105-140о С (40% масс. от потенциала, 60% остаётся в уходящей нефти), взяты из таблицы 1.2.

Xгаз+н.к.-140°С =1,0+5,3+0,4•3,6=7,74 % масс.

На основании этих данных составляем материальный баланс К-1 и сводим результаты в таблицу 5.1.

Таблица 5.1-Материальный баланс отбензинивающей колонны К-1

5.2 Материальный баланс основной колонны К-2

Фракция н.к.-140о С будет содержать 60% масс. фр. 105-140о С

% масс. на нефть.

Так как известно, что при ректификации, из-за нечёткости разделения, в мазуте остаётся 5%(на мазут) дизельной фракции [4,9], то выход мазута на отбензиненную нефть будет:

,

где Xн — потенциальное содержание мазута в нефти, %масс.;

Yн — выход отбензиненной нефти на нефть, масс. доли;

a— содержание светлых в мазуте, масс. доли.

Следовательно выход дизельной фракции 230-360°С уменьшится с 19,0%(масс.) до 16,13% (масс.) на нефть.

На основании этих данных составляем материальный баланс К-2 и сводим результаты в таблицу 5.2.

Таблица 5.2 - Материальный баланс основной колонны К-2

5.3 Материальный баланс стабилизационной колонны К-3

В колонну К-3 поступает объединённая фракция газ + н.к.-140°С из ёмкости орошения К-1 и фр. н.к.-140о С из К-2 по таблицам 5.1 и 5.2:

Gгаз+н.к.-140°С + Gн.к.-140°С =27643+7714=35357 кг/ч.

На основании этих данных составляем материальный баланс К-3 и сводим результаты в таблицу 5.3.

Таблица 5.3 - Материальный баланс стабилизационной колонны К-3

5.4 Материальный баланс колонны четкой ректификации К-4

В колонну поступает стабильный бензин нк-140о С из стабилизационной колонны К-3.

Таблица 5.3 - Материальный баланс колонны четкой ректификации К-4

5.5 Материальный баланс вакуумной колонны К-7

Так как известно, что из-за нечёткости разделения в гудроне остаётся до 10%(на гудрон) масляной фракции [4,9], то выход гудрона на мазут будет:

где Xн — потенциальное содержание гудрона в нефти, %масс.;

Yн — выход мазута на нефть, масс. доли;

a— содержание светлых в гудроне, масс. доли.

Следовательно выход масляной фракции 450-550°С уменьшится с 14,3% до 10,55% на нефть. При вакуумной перегонке неизбежно образуются газы разложения — около 0,02% на мазут. Выход гудрона уменьшится:

Xм =59,17-0,02=59,15% масс. на мазут.

Выход вакуумного газойля 2,87% масс. на нефть (п. 5.2).

На основании этих данных составляем материальный баланс К-7 и сводим результаты в таблицу 5.4:

Таблица 5.4 - Материальный баланс вакуумной колонны К-7

5.6 Материальный баланс установки АВТ-3

mirznanii.com

Установка - первичная переработка - нефть

Установка - первичная переработка - нефть

Cтраница 1

Установки первичной переработки нефти составляют основу всех нефтеперерабатывающих заводов, от работы этих установок зависят качество и выходы получаемых компонентов топлив, а также сырья для вторичных и других процессов переработки нефти.  [2]

Установки первичной переработки нефти составляют основу всех НПЗ. На них вырабатываются практически все компоненты моторных топлив, смазочных масел, сырье для вторичных процессов и для нефтехимических производств.  [3]

Установки первичной переработки нефти потребляют до 2 млн. т сырья в год. В малотоннажных производствах ( реактивы, редкие металлы, продукты тонкого органического синтеза) производительность составляет килофаммы и даже фаммы продукта в час.  [4]

Установка первичной переработки нефти представляет собой совокупность связанных технологических процессов с параллельно-последовательным соединением аппаратов.  [5]

Установки первичной переработки нефти составляют основу всех нефтеперерабатывающих заводов, от работы этих установок зависят качество и выходы получаемых компонентов топлив, а также сырья для вторичных и других процессов переработки нефти.  [7]

Современные установка первичной переработки нефти.  [8]

На установках первичной переработки нефти достигнута высокая степень автоматизации. Так, на заводских установках используют автоматические анализаторы качества ( на потоке), определяющие: содержание воды и солей в нефти, температуру вспышки авиационного керосина, дизельного топлива, масляных дистиллятов, температуру выкипания 90 % ( масс.) пробы светлого нефтепродукта, вязкость масляных фракций, содержание продукта в сточных водах. Некоторые из анализаторов качества включаются в схемы автоматического регулирования. Например, подача водяного пара в низ отпар-ной колонны автоматически корректируется по температуре вспышки дизельного топлива, определяемой с помощью автоматического анализатора температуры вспышки. Для автоматического непрерывного определения и регистрации состава газовых потоков применяют хроматографы.  [9]

Опыт эксплуатации установок первичной переработки нефти свидетельствует о том, что, несмотря на применение различных защитных покрытий, степень снижения коррозии еще недостаточна для обеспечения требуемого срока службы аппаратуры и оборудования. Особенно велик ущерб, наносимый коррозией конденса-ционно-холодильному узлу.  [10]

При эксплуатации установки первичной переработки нефти необходимо строго следить за постоянным расходом сырья на установке, загрузкой печей и их температурным режимом. Следует строго поддерживать температуры верха и низа колонны, расход острых и циркуляционных орошений и давление в аппаратах в заданных пределах. Необходимо контролировать уровень раздела фаз вода-бензин в рефлюксных емкостях. Попадание в ректификационные колонны воды вместе с орошением резко повышает давление, вызывает срабатывание предохранительных клапанов, нарушение всего технологического режима. Необходимо периодически проверять работу уровнемеров в колоннах и других аппаратах.  [11]

Если на установках первичной переработки нефти в силу физического механизма ее разделения выход целевого компонента постоянно уменьшается с увеличением q, то в каталитических процессах фактически наблюдается более сложная динамика выхода. На нее оказывают влияние соотношение скоростей основной и побочных химических реакций при разных величинах объемной скорости подачи сырья.  [12]

Основные направления совершенствования установок первичной переработки нефти состоят в следующем: обеспечение высокого отбора от потенциала светлых нефтепродуктов и масляных дистиллятов, повышение качества дистиллятов ( без налегания соседних фракций по температурам кипения), повышение коэффициента использования энергоресурсов за счет более полного использования теплоты отходящих потоков, сокращение удельных расходов топлива, электроэнергии, воды, воздуха, реагентов, использование более эффективного оборудования, внедрение прогрессивных средств контроля и автоматики, схем комплексной автоматизации управления процессами.  [13]

Пуск и остановка установок первичной переработки нефти и основные условия их безаварийной работы, Пусклюбой установки первичной переработки нефти включает несколько этапов: подготовку к пуску, холодную и горячую циркуляцию, вывод на нормальный режим и нормальную эксплуатацию установки.  [14]

Основные направления совершенствования установок первичной переработки нефти состоят в следующем: обеспечение высокого отбора от потенциала светлых нефтепродуктов и масляных дистиллятов, повышение качества дистиллятов, повышение коэффициента использования энергоресурсов за счет более полного использования теплоты отходящих потоков, сокращение удельных расходов топлива, электроэнергии, воды, воздуха, реагентов, внедрение прогрессивных средств контроля и автоматики.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Процессы первичной переработки нефти - часть 2

При получении масляных фракций в вакуумной части установки основными показателями, определяющими отбор их по кривой ИТК, являются высокое потенциальное их содержание, большой индекс вязкости, вязкость, температура застывания, содержание нафтеновых углеводородов, серы.

Основные физико-химические и эксплуатационные свойства выбранных фракций сравниваются с показателями качества по ГОСТ на товарный вид продукции.

3. Технологическая схема

Описание работы ЭЛОУ (рисунок 1) [1]

Сырая нефть, смешиваясь с деэмульгатором и раствором щелочи, поступает в теплообменный блок, где нагревается до оптимальной температуры. Затем нагретая нефть смешивается в эжекционных смесителях с промывной водой, поступающей из электродегидраторов второй ступени (Э-1/2 и Э-2/2), и подается в параллельно работающие электродегадраторы первой ступени (Э-1/1 и Э-2/1), сверху которых выводится частично обессоленная нефть, а снизу соленая вода на очистные сооружения. Частично обессоленная' нефть из Э-1/1 и Э-2/1 поступает в.эжекционные смесители, где смешивается со свежей промывной водой, поступающей из емкости (Е), затем в электродегадраторы второй ступени, сверху которых выводится обессоленная и обезвоженная нефть на установку АВТ.

Напряжение между электродами поддерживается 32-33 кВ. Ввод сырья в электродегидратор и вывод из него осуществляется через расположенные в нижней и верхней части аппарата трубчатые перфорированные распределители (маточники). Маточники обеспечивают равномерное распределение восходящего потока нефти. В нижней части электродегидратора между маточником и электродами поддерживается определенный уровень воды, содержащий деэмульгатор, где происходит термохимическая обработка эмульсии и отделение- наиболее, крупных капель воды. В зоне между зеркалом воды и плоскостью нижнего электрода нефтяная эмульсия подвергается воздействию слабого электрического поля, а в зоне между электродами - воздействию электрического поля высокого напряжения.

С - смеситель; ТОБ - теплообменный блок; Е - емкость; Н-1, Н-2 - насосы; Э - электродегидраторы

Рисунок 1 - Принципиальная схема ЭЛОУ

Технологическая схема установки АВТ – рисунок 2 [1] (атмосферно-вакуумная установка) должна обеспечивать получение выбранного ассортимента продуктов из заданного сырья наиболее экономичным способом. Выбранная схема должна обеспечивать большую глубину отбора, четкость фракционирования, гибкость процесса, большой межремонтный пробег и высокие технологические показатели.

В зависимости от мощности установки по сырью и свойств перерабатываемой нефти выбирают один из вариантов схем перегонки: однократного испарения с ректификацией в одной колонне (вариант 1), двукратного испарения в двух колоннах (вариант 2). Вариант 1 применяют для стабилизированных нефтей, в которых содержание бензиновых фракций не превышает 2-10 % мае. Схема по варианту 2 самая распространенная в отечественной практике, она наиболее гибка и работоспособна при значительном изменении содержания бензиновых фракций и растворенных газов, а также для сернистых и высокосернистых нефтей.

К атмосферному блоку перегонки нефти добавляется блок вакуумной перегонки мазута также по различным схемам: однократного испарения в одной ректификационной колонне, двукратного испарения с ректификацией в двух колоннах. Вакуумный газойль или масляные дистилляты можно выводить в виде паров, жидких дистиллятов через отпарные колонны, промежуточные емкости и т.п.

В случае выработки на установке узких бензиновых фракций делается выбор схемы блока вторичной разгонки бензиновой фракции.

Независимо от выбора блока вторичной разгонки в схеме установки должен быть предусмотрен блок стабилизации бензиновой фракции. Привыборе схемы-установки следует ознакомиться с типовыми схемами установок первичной перегонки нефти и мазута.

Рисунок 2 - Схема установки первичной переработки нефти (ЭЛОУ-АВТ).

К-1 - отбензинивающая колонна; К-2 - атмосферная колонна; К-3 -отпарная колонна; К-4 - стабилизатор; К-5 - вакуумная колонна; Э-1 - Э-4 - электродегидраторы; П-1, П-2 - печи; КХ-1 - КХ-4 - конденсаторы-холодильники; Е-1, Е-2 - рефлюксные емкости; А-1 - пароэжекторный вакуум-насос;

I - нефти; II - головка стабилизации; III - стабильный бензин; IV -керосин; V - дизельная фракция; VI - вакуумный дистиллят; VII - гудрон; VIII - выхлопные газы эжектора; IX - деэмульгатор; X - вода в канализацию; XI - водяной пар.

Установка состоит из 2-3 блоков: 1) обессоливания; 2) атмосферной перегонки; 3) вакуумной перегонки мазута. Установка, состоящая только из первых двух блоков носит название атмосферной трубчатки (AT), из всех трёх блоков - атмосферно-вакуумной трубчатки. Иногда первый и третий выделяются в самостоятельные установки. Нефть насосом забирается из сырьевого резервуара и проходит теплообменники, где подогревается за счет теплоты отходящих продуктов, после чего поступает в электродегидраторы. В электродегидраторах под действием электрического поля, повышенной температуры, деэмульгаторов происходит разрушение водонефтяной эмульсии и отделение воды от нефти.

Вода сбрасывается в канализацию (или подаётся на упарку с выделением солей), а нефть проходит вторую группу теплообменников и поступает в отбензинивающую колонну К-1.

В колонне К-1 из нефти выделяется легкая бензиновая фракция, которая конденсируется в холодильнике-конденсаторе ХК-1 и поступает в рефлюксную ёмкость Е-1. Полуотбензиненная нефть с низа колонны К-1 подаётся через трубчатую печь П-1 в атмосферную колонну К-2. Часть потока полуотбензиненной нефти возвращается в К-1, сообщая дополнительное количество теплоты, необходимое для ректификации.

В колонне К-2 нефть разделяется на несколько фракций. Верхний продукт колонны К-2 -тяжелый бензин - конденсируется в холодильнике-конденсаторе ХК-2 и поступает в рефлюксную ёмкость Е-2. Керосиновая и дизельные фракции выводятся из колонны К-2 боковыми погонами и поступают в отпарные колонны К-3.

В К-3 из боковых погонов удаляются (отпариваются) легкие фракции. Затем керосиновая и дизельные фракции через теплообменники подогрева нефти и концевые холодильники выводятся с установки. С низа К-2 выходит мазут, который через печь П-2 подаётся в колонну вакуумной перегонки К-5.

В вакуумной колонне К-5 мазут разделяется на вакуумный дистиллят, который отбирается в виде бокового погона, и на гудрон. С верха К-5 с помощью пароэжекторного насоса А-1 отсасываются водяные пары, газы разложения, воздух и некоторое количество легких нефтепродуктов (дизельная фракция). Вакуумный дистиллят и гудрон через теплообменники подогрева нефти и концевые холодильники уходят с установки.

Для снижения температуры низа колонн К-2 и К-5 и более полного извлечения дистиллятных фракций в них полется водяной пар. Избыточная теплота в К-2 и К-5 снимается с помощью циркулирующих орошений.

Бензин из рефлюксных емкостей Е-1 и Е-2 после подогрева подается в стабилизационную колонну К-4. С верха К-4 уходит головка стабилизации -сжиженный газ, а с низа - стабильный бензин. Необходимая для ректификации теплота подводится в К-4 циркуляцией части стабильного бензина через печь.

После выбора схемы установки необходимо сделать выбор:

- конструкции тарелок;

- способов орошения колонн;

- способов подвода тепла в низ колонн;

- способов вывода продуктов из колонн;

- типов нагревательных печей, теплообменников, конденсаторов-холодильников;

- способов создания вакуума в колоннах.

Исходя из практических данных, необходимо установить общее число тарелок в колоннах, а также число тарелок, приходящихся на каждый отбираемый продукт.

4.Технологический режим

Показатели технологического режима установок первичной переработки приводятся в таблице 1:

Таблица 1 – Показатели технологического режима установок первичной переработки

При выборе технологической схемы и режима атмосферной перегонки нефти руководствуются главным образом ее фракционным составом и, прежде всего, содержанием в ней газов и бензиновых фракций.

Перегонку стабилизированных нефтей постоянного состава с небольшим количество растворенных газов (до 1,2 % масс.), относительно невысоким содержанием бензина (12-15 % мас.) и выходом фракций до 350 °С не более 45 % мас. энергетически наиболее выгодно осуществлять на установках AT по схеме с однократным испарением, то есть с одной сложной ректификационной колонной с боковыми отпарными секциями. Установки такого типа широко применяются на зарубежных НПЗ. Они просты и компактны, благодаря осуществлению совместного испарения легких и тяжелых фракций, требуют минимальной температуры нагрева нефти для обеспечения заданной доли отгона, характеризуются низкими энергетическими затратами и металлоемкостью. Основной их недостаток — меньшая технологическая гибкость и пониженный (на 2,5-3,0 % мае.) отбор светлых фракций, по сравнению с двухколонной схемой, необходимость более качественной подготовки нефти.

mirznanii.com