Извлечение промышленных компонентов из попутных нефтяных вод. Вода добываемая попутно с нефтью


Попутная вода - Большая Энциклопедия Нефти и Газа, статья, страница 1

Попутная вода

Cтраница 1

Попутной водой называют воду любого происхождения, добываемую скважиной из продуктивного пласта с нефтью или газом.  [2]

Добыча попутной воды определяется при этом грубо ориентировочно, исходя из предполагаемого процента обводнения эксплуатационных скважин в различных рядах к моменту их выключения, или на основании эмпирических кривых обводнения сходных и уже значительно обводнившихся залежей. Понятно, что таким путем нельзя учесть нефтеотдачу и добычу попутной воды при разных схемах - размещения нефтяных скважин, различных расстояниях между ними и в зависимости от других особенностей возможных систем разработки, рассматриваемых при проектировании. Между тем различие в этих показателях может быть существенным, а порой и решающим в вопросе выбора схемы и варианта разработки, расстояний между эксплуатационными скважинами, порядка и режимов их ра боты.  [3]

В попутной воде, отделяемой от нефти Ватьеганского и Южно-Ягунского месторождений, обнаруживается от 0 1 до 0 5 мг / л сероводорода, что не должно значительно увеличивать ее коррозионную активность. В последние годы в сточной воде системы ППД обоих месторождений отмечается присутствие до 14 мг / л сульфат-ионов, что, в частности, можно связать с интенсификацией процесса сульфатредукции в заводняемых пластах.  [4]

Нефть и попутная вода добываются более чем с 50 горизонтов от кембрийского до пермского. Большинство продуктивных горизонтов представлено песчаниками, хотя продуктивны и некоторые известняки. Песчаники большей частью неоднородны и разрывны, только песчаники Биг Инджун и Береа простираются на больших площадях. Из штатов, входящих в Аппалачский район, в которых ведется добыча нефти, имеются данные анализов по Кентукки, Огайо, Пенсильвании и Западной Вирджинии. Общая концентрация растворенных солей в водах, добытых вместе с нефтью, изменяется в пределах от нескольких сотен до 300 000 мг / л и более.  [5]

Если из попутных вод выпадают и сульфатны, к-яп соли, то обычно наблюдается четкая локализация осадков: в НКТ.  [6]

Регулирование добычи попутной воды и интенсификация добычи нефти после повышения обводненности продукции скважин выше 80 - 90 % являются важнейшими задачами повышения технико-экономической эффективности разработки месторождения.  [7]

Значительного поступления попутной воды в скважины обычно не происходит. Однако иногда, несмотря на неподвижность ГВК, в часть скважин поступает некоторое количество воды, что может быть связано с перемещением ее из водоносной части пласта по трещинам или по тонким высокопроницаемым прослоям, из водосодержащих линз, прослоев или каверн, имеющихся в объеме самой залежи, и с другими причинами. Выявление источника и путей поступления воды в скважины в таких случаях требует проведения специальных геолого-промысловых исследований. Газовый режим характерен для многих крупных газовых месторождений нашей страны.  [8]

Стабильность состава попутных вод характерна для большинства нефтяных залежей платформенных нефтегазоносных провинций.  [9]

Увеличение минерализации попутных вод весьма характерно также для газовых и особенно газоконденсатных залежей.  [11]

Ограничение отборов попутной воды осуществлено остановкой 3780 нерентабельных высокообводненных скважин, отключением из разработки обводненных пластов, на которых размещены 3560 скважин, интенсификацией отбора нефти по безводным или малообводненным участкам, вытеснением нефти из частично промытых пластов или из водонефтяных в нефтяные зоны, особым режимом работы обводненных скважин на заводненных участках путем длительной остановки на 2 - 3 месяца и последующим пуском обводненного фонда. В результате этого отбор попутной воды сокращен на 180 млн. т в год.  [12]

Ограничение отборов попутной воды осуществляется на месторождениях Татарстана остановкой нерентабельных высокообводненных скважин, отключением из разработки обводненных пластов, интенсификацией отбора нефти по безводным или малообводненным участкам, вытеснением нефти из частично промытых пластов или ВНЗ ( водонефтяных зон) в нефтяные зоны, особым режимом работы обводненных скважин на заводненных участках.  [13]

Определение типа попутных вод значительно облегчается, когда имеются гидрохимические графики. На рис. 54 приведены несколько видоизмененные и более универсальные графики, упрощающие выявление различных жидкостей в составе попутных вод. На них по ряду гидрохимических показателей выделяются поля распространения вод различного генезиса и их смесей.  [14]

Предварительная оценка попутных вод НПУ Первомайнефть с целью выяснения технологичности их для организации промышленного производства брома, Отч.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Попутно-добываемая вода - Большая Энциклопедия Нефти и Газа, статья, страница 1

Попутно-добываемая вода

Cтраница 1

Формирование состава попутно-добываемых вод и их влияние на гипсоотложение при эксплуатации нефтяных местосто-рождений / / Нефтепромысловое дело: Обзор, информ.  [1]

При этом содержание h3S за весь анализируемый период в попутно-добываемой воде изменилось незначительно. Кривые на рис. 3, таким образом, свидетельствуют о прямой связи роста скорости коррозии от содержания FeS в осадке.  [3]

При совместной разработке пластов по этой же причине увеличивается количество попутно-добываемой воды в конечной стадии разработки месторождения. Это происходит потому, что по пластам предельная обводненность достигается не одновременно. Каждую скважину приходится эксплуатировать до тех пор, пока обводненность продукции не достигнет предельной величины по низкопродуктивному пласту.  [4]

Предложена методика оценки интенсивного образования FeS по содержанию Fe Fe в попутно-добываемой воде.  [5]

Выщелачивание сульфатно-сульфидных минералов, как отмечалось выше, может привести к пересыщению попутно-добываемых вод сульфатом бария и осаждению этого соединения в нефтепромысловом оборудовании.  [6]

Затягивание сроков разработки высокопродуктивного пласта, объединенного с низкопродуктивным, приводит к резкому увеличению количества попутно-добываемой воды, так как еще не существуют надежные методы изоляции обводненного пласта, особенно когда он располагается выше по разрезу.  [7]

Для разработки эффективных методов предупреждения выпадения солей в осадок и отложения в оборудовании необходимо осуществить их прогноз исходя из химического состава попутно-добываемых вод и термобарических условий их движения.  [8]

Это позволяет рассматривать Арланское месторождение как перспективный объект применения гелеобразующих композиций с целью улучшения фильтрации нефти, повышения охвата пластов вытеснением, снижения объемов попутно-добываемой воды и увеличения нефтеотдачи.  [9]

Цель данной работы - разработка научно обоснованных технологических решений, направленных на предупреждение и удаление сульфидсодер-жащих отложений солей в процессе добычи обводненной нефти и утилизации попутно-добываемой воды на базе исследования состава, причин и условий их образования.  [10]

Установлены основные виды и степень осложнений в добыче обводненной нефти на ряде месторождений Урало-Поволжья, связанных с отложениями сульфидсодержащих осадков в скважинах, системах сбора, предварительного сброса, подготовки и утилизации попутно-добываемой воды с использованием системного подхода при анализе и обобщении промыслового материала.  [11]

В табл. 5 представлены полученные на основании лабораторных анализов расходы известных реагентов ингибиторов-солеотложений: ИСБ-1, Ин-кредол - 1, ДПФ-1 для 100 % - ного предупреждения выпадения сульфата кальция и карбонатов из попутно-добываемых вод месторождений НГДУ Крас-нохолмскнефть при наличии в ней ионов железа.  [12]

Эффективность различных осадкогелеобразующих составов ( ОГОТ), примененных на Андреевском месторождении, во многом зависит от геологического строения очага ( участка) и технологических показателей. Применение ОГОТ позволяет существенно снизить объемы попутно-добываемой воды.  [13]

Учитывая, что формирование сульфидсодержащих осадков связано с жизнедеятельностью СВБ и образованием h3S, применение бактерицидов, подавляющих СВБ, целесообразно производить заблаговременно еще до поступления закачиваемой воды в пласты. При этом возникает задача поиска эффективных бактерицидов и точек их ввода на всем пути продвижения попутно-добываемой воды от добывающей скважины до нагнетательной.  [15]

Страницы:      1    2

www.ngpedia.ru

Попутные нефтяные воды.

Извлечение промышленных компонентов из попутных нефтяных вод.

Вместе с нефтью на нефтяных промыслах извлекается огромное количество подземной воды. Чем дольше длится эксплуатация месторождения, тем большее количество воды поднимается на поверхность. В некоторых случаях количество извлекаемой воды достигает 90%. Наивысшее количество воды фиксируется при полном обводнении скважин. Так как извлекаемые компоненты используются, главным образом, в промышленности, они получили не совсем удачное название «промышленные».

 

Поскольку эти воды извлекаются с большой глубины, они обладают значительной минерализацией и высоким содержанием ряда ценных компонентов, в большинстве своем относящихся к разряду микрокомпонентов.

Конечно, интересы нефтяников и гидрогеологов – промысловиков прямо противоположны. Однако, они легко могут быть объединены, если учесть цена получаемого гидроминерального сырья, цена которого в оптимальных случаях может достигать или даже превышать цена нефтяных углеводородов.

Вопрос извлечения микроэлементов из попутных нефтяных вод необходимо рассматривать с экономической точки зрения. Для организации производства по извлечению промышленно ценных компонентов из попутных нефтяных вод нужно учитывать следующие моменты:

1.   Значения концентраций потенциально извлекаемых компонентов в водах.

2.   Общий расход (объем) попутных вод поступающий с площади месторождения за единицу времени.

3.   Эффективность технологии извлечения компонентов.

4.   Спрос и цены на мировых и внутренних рынках на перспективное сырье.

Наибольшие концентрации в нефтяных водах наблюдаются для брома. Количество брома в рассолах достигает 6-7 г/л. При содержании брома более 250 мг/л добыча брома становится рентабельной. В зоне распространения хлор – кальциевых вод отмечается рост содержания брома с увеличением минерализации и метаморфизации вод. Бром отличается высокой растворимостью в воде. Соли брома (бромиды) способны на 95% растворяться в воде. Основное количество брома накапливается в морских и океанических водах (содержание брома в морской воде составляет порядка 65 г/л). В процессе галогенеза бром постепенно накапливается в рассолах по мере увеличения минерализации. Бром поступает в подземные воды за счет растворения галогенных пород.

Бромные воды и рассолы имеют широкое распространение в нефтегазоносных бассейнах. Они развиты на большей части Восточно-Европейской и Сибирской платформ. В Северо-Двинском бассейне в отложениях палеозоя бромные рассолы с минерализацией до 190 г/л содержат 375-900 мг/л брома. На юге Тиммана, в Печорском бассейне в отложениях кембрия – палеогена скважинами вскрыты рассолы с минерализацией от 50 до 235 г/л и содержанием брома до 800 мг/л (Нижняя Омра, Северная Сылва).

В Припятском прогибе в ультракрепких рассолах содержание брома достигает 3,6 г/л.

В Поволжье бромные воды и рассолы распространены почти повсеместно. В Пермской области вплоть до восточной границы Предуральского прогиба ультракрепкие бромные рассолы распространены ниже ангидритовых пермских отложений и содержат до 1,8 г/л брома (Краснокамск).

В пределах Сибирской платформы  в глубоких горизонтах Конского, Среднеангарского, Ленско-Вилюйского бассейнов на глубине 2-3 км развиты ультракрепкие рассолы с содержанием брома до 7 г/л. В Иркутском бассейне в рассолах карбоновых отложений мотской свиты, на месторождениях Братское, Среднеботубинское в водах с минерализацией 290-450 г/л содержание брома составляет 5-6 г/л.

Не исключено, что новые месторождения, обнаруженные в акваториальной части древних платформ, также будут содержать кондиционные концентрации брома.

В Рф около 70% брома добывают из подземных вод. Остальные 30% получают из рапы озер и морских заливов и отходов калийного производства. Добывают бром из рассолов Краснокамского в Пермской области. Используются воды хлоридного – кальциевого –  натриевого состава.

По добыче брома Россия находится на 4 месте уступая USA, Англии, Германии и Израилю. Мировое производство брома оценивается порядка 550 тыс. тонн в г., цена на бром составляет около 1 тыс. долл. за тонну. Россия импортирует бром из USA и Израиля в объема 20-25 тыс. тонн в г..

Другим распространенным галогеном, получаемым из подземных вод, является йод. Йод не концентрируется в горных породах, сырьем для его получения служит гидросфера и водная растительность. Йод содержится в водах с невысокой минерализацией. Накопление йода в воде ассоциируется с повышенным содержанием органических веществ. Главные концентраторы йода – морские растения и организмы. В составе растений преобладают минеральные формы йода – йодиты. Так как водорослевый материал отлагается на участках опресненной морской воды, то йод, прежде всего, связан с седиментационными водами пониженной минерализации. Для вод  нефтяных месторождений характерны высокие концентрации йода. Взаимодействие пород с подземными водами происходит с участием органического вещества, которое регулирует концентрацию и форму миграции йода в подземных водах. В минерализованных водах переходу йода из пород способствует щелочная среда, восстановительная обстановка и температура.

По составу йодные воды являются хлоридно-гидрокарбонатными или гидрокарбонатно-хлоридными натриевыми.

В распространении и содержании йода в подземных водах проявляется определенная зависимость от возраста водовмещающих пород. Так, в бассейнах областей мезозой- кайнозойской складчатости среднее содержание йода в подземных водах составляет 36,3 мг/л, а водах палеозойской складчатости 12,5 мг/л.

В неокомском комплексе центральной зоны Западно-Сибирского мегабассейна воды имеют минерализацию 11 – 27 г/л, а содержание йода составляет 18-34 мг/л.

На первом месте по производству йода в мире находится Япония, Россия находится на 3 месте. Цена за тонну йода составляет около 33 тыс. долларов.

Стронций традиционно извлекается из обогащенных стронцием минералов. Однако, 24% мировых запасов стронция находится в подземных водах. В настоящее время имеются технологии извлечения стронция из подземных вод.

В юрских отложениях Западно-Сибирского мегабассейна на месторождениях  Ямало –Ненецкого автономного округа – Фестивальном и Харампурском воды хлоридно-кальциевые и имеют минерализацию 18,5-19 г/л, содержание стронция составляет 79-163 мг/л (0,6%), что ниже установленных в нашей стране кондиций (300 мг/л). Цена стронция на мировом рынке составляет 1200 – 1500 долл. за тонну. Поэтому, даже большие запасы вод нефтяных месторождений северной части Западной Сибири не оправдают затрат на его производство. Однако, потребности в стронции в нашей стране удовлетворяются, в основном, за счет импорта, а также переработки апатитового концентрата, где карбонат стронция составляет 2,4%.

До 63% мировых запасов лития содержится в подземных водах. Около 30% производится из подземных и поверхностных вод. Наиболее передовые технологии извлечения лития развиты в USA. В штатах Мичиган и Оклахома нефтяные воды содержат до 3 г/л лития.

В Рф принята кондиция для лития в 10 мг/л. По состоянию на начало 2008 г., цена за тонну лития составила 6,3 тыс. долларов. Таким образом, извлечение лития из нефтяных вод месторождений Ямало-Ненецкого округа при использовании современных технологий может оказаться рентабельным, учитывая большие запасы вод.

Интересно рассмотреть возможность извлечения некоторых редких элементов из нефтяных вод Ямало – Ненецкого автономного округа. Вопрос извлечения скандия, цезия и германия носит сложный характер.

Содержание скандия в нефтяных водах составляет до 0,012 мг/л. Кондиционное содержание для скандия не установлено, но известно что скандий добывается из попутных бокситовых и урановых руд с содержанием от 0,00001% до 0,002%. Содержание скандия в морской воде составляет 4х10-5 мг/л. Цена на скандий доходит до 206 тыс. долл. за килограмм.

 

А.Н. Воронов, А.В. Тудвачев

Геологический факультет СПбГУ

ИЗВЛЕЧЕНИЕ ПРОМЫШЛЕННЫХ КОМПОНЕНТОВ ИЗ ПОПУТНЫХ НЕ,попутные нефтяные воды, технологии очистки воды

 

www.ecotoc.ru

Очистка попутно-добываемой воды - 3А Инжиниринг

Технология парогравитационного воздействия SAGD

В классическом описании эта технология требует бурения двух горизонтальных скважин, расположенных параллельно одна над другой . Скважины бурятся через нефтенасыщенные толщины вблизи подошвы пласта. Расстояние между двумя скважинами, как правило, составляет 5 метров. Длина горизонтальных стволов достигает 1000 м. Верхняя горизонтальная скважина используется для нагнетания пара в пласт и создания высокотемпературной паровой камеры.

Процесс парогравитационного воздействия начинается со стадии предпрогрева, в течение которой (несколько месяцев) производится циркуляция пара в обеих скважинах. При этом за счет кондуктивного переноса тепла осуществляется разогрев зоны пласта между добывающей и нагнетательной скважинами, снижается вязкость нефти в этой зоне и, тем самым, обеспечивается гидродинамическая связь между скважинами.

На основной стадии добычи производится уже нагнетание пара в нагнетательную скважину. Закачиваемый пар, из-за разницы плотностей, пробивается к верхней части продуктивного пласта, создавая увеличивающуюся в размерах паровую камеру. На поверхности раздела паровой камеры и холодных нефтенасыщенных толщин постоянно происходит процесс теплообмена, в результате которого пар конденсируется в воду и вместе с разогретой нефтью стекают вниз к добывающей скважине под действием силы тяжести.

Рост паровой камеры вверх продолжается до тех пор, пока она не достигнет кровли пласта, после чего она начинает расширяться в стороны. При этом нефть всегда находится в контакте с высокотемпературной паровой камерой. Таким образом, потери тепла минимальны, что делает этот способ разработки выгодным с экономической точки зрения.

На выходе из скважины получается смесь нефтепродуктов и воды, которая возникает после конденсации пара в пласте. Далее эту смесь отправляют на предприятия переработки и очистки нефти, после которых получают нефтепродукты и попутно-добываемую воду (ПДВ), которая может составлять до 80% от всего объема смеси. Независимо от того будет ли ПДВ использоваться повторно в скважине или будет возвращена в окружающую среду, она должна быть подвергнута процедуре очистки из за высокого содержания в ней взвесей, нефтепродуктов, сероводорода и прочих загрязняющих веществ.

Преимущества технологии парогравитационного дренажа:

  • высокий коэффициент извлечения нефти — при благоприятных условиях достигает 75%;
  • процесс добычи нефти происходит непрерывно;
  • баланс между получением пара в условиях забоя и потерями тепла, как результат — максимальные объемы извлечения.

Недостатки технологии парогравитационного дренажа:

  • значительная часть себестоимости добычи нефти связана со стоимостью парогенерации;
  • требуется источник большого объема воды, а также оборудование по подготовке воды, имеющее большую пропускную способность;
  • для эффективного применения технологии требуется однородный пласт сравнительно большой мощности.

Проблемы переработки сточных вод

Общий объем извлекаемой из недр пластовой воды превышает один миллиард кубических метров в год. Очистка таких объемов требует значительных материальных, энергетических и трудовых затрат. Значительная часть загрязнений имеет коллоидные размеры, укрупнение которых и последующее удаление из пластовых и сточных вод представляет существенные технологические трудности.

Достигнутая в целом по нефтедобывающей отрасли степень очистки сточных вод (50-60 мг/л остаточной нефти и 40-50 мг/л твердых взвешенных частиц (ТВЧ)) позволяет использовать их в системе поддержания пластового давления (ППД) нефтяных месторождений в качестве вытесняющего агента, но не является оптимальной. Требование более глубокой очистки сточных вод (до 10-15 мг/л остаточной нефти) и ТВЧ с минимальными размерами дисперсных частиц диктуется необходимостью увеличения нефтеотдачи, вовлечения в разработку низкопроницаемых пластов и необходимостью увеличения межремонтного периода эксплуатации нагнетательных скважин.

Кроме этого, в связи со значительным превышением объемов пластовых вод, подлежащих очистке, над производительностью очистных сооружений в ряде мест качество подготовки сточных вод ухудшается, что приводит к снижению приемистости нагнетательных скважин, сокращению объемов закачки и невозможности использования в системе поддержания пластового давления до 17% высокоминерализованных сточных вод. При этом недостающее для осуществления заводнения количество воды компенсируют закачкой в пласт пресной воды, а промысловые стоки закачивают в поглощающие горизонты. В результате этого в почву с пластовой водой попадают значительные объемы нефти, часть которых попадает впоследствии в реки и водоемы. Так, например, при нормах содержания нефти в воде, потребляемых для общехозяйственных нужд 0,05 мг/л , попадание в воду 200 тонн нефти приведет к загрязнению 4 млрд. кубометров воды. С учетом годового количества порывов водоводов, это вполне реальные объемы загрязняемых поверхностных вод для любой крупной нефтедобывающей компании [3, 14].

В целом проблема очистки качества закачиваемой воды в продуктивные пласты давно переросла в проблему более полного вытеснения нефти из них и повышения эффективности разработки месторождений в целом.

Содержание в закачиваемой воде значительного количества дисперсий в виде капель нефти, частиц породы, продуктов коррозии, остатков бронирующих оболочек глобул водонефтяной эмульсии, парафиново-смолистых комплексов и других веществ приводит к кольматации пор и каналов продуктивного пласта, препятствуя вытеснению из них нефти, существенно снижая тем самым основные показатели разработки нефтяных месторождений. В частности, это обусловливает потребность для поддержания расчетных объемов закачки воды в пласт в завьппенном количестве нагнетательных скважин, приемистость которых быстро сокращается во времени, осуществлении большого числа их ремонтов, увеличенных затрат на электроэнергию и т.д.

Требование более глубокой очистки сточных вод (до 5-10 мг/л остаточной нефти и ТВЧ с размерами дисперсных частиц вплоть до 0,2-1,0 мкм) диктуется, в первую очередь, необходимостью увеличения нефтеотдачи эксплуатируемых месторождений, вовлечения в разработку низкопроницаемых коллекторов, необходимостью сокращения числа ремонтных работ на нагнетательных скважинах, а так же обоснованного уменьшения их числа, обеспечивающего закачку расчетных объемов воды при более низких темпах снижения приемистости.

Достаточно отметить, что для мелкозернистых песчаников практически 95% норового пространства представлено 20-90-микронными каналами (в них могут пройти частицы с характерным размером <4 мкм), но 5% пор при таких размерах частиц воду не примут и нефть из них вытеснена не будет. В алевролитах размер пор более 20 мкм составляет около 12%. Следовательно, 88% пор будут такими частицами кольматированы и нефть останется не вытесненной. В этом случае для увеличения нефтеотдачи необходимо закачивать в пласт воду с размерами частиц порядка 1 мкм. Положение осложняется еще и тем, что размер межпоровых каналов, как правило, в несколько раз меньше самих пор (в песчаниках девона более 30% межпоровых каналов меньше 10 мкм, а размером 2 мкм — 23%).

Именно межпоровые каналы и кольматируются в первую очередь. В Карабашском водохранилище вода содержит около 100000 частиц в одном кубическом сантиметре, в том числе более 10 мкм — около 1000 ед. Частицы быстро кольматируют поры. Например, при закачке чистой воды (размер частиц 0,2 мкм) снижение проницаемости керна на 1% имеет место после фильтрации 5 — 6 его объемов, а при фильтрации обычно применяемой воды — уже только 0,61. Кольматация имела место практически в 10 раз быстрее. Поэтому для извлечения остаточных запасов в пласты нужно закачивать чистую воду, так как остаточных, не извлеченных запасов еще много и они составляют: для высокопродуктивных пластов — 15,9% от начальных, глинистых высокопродуктивных — 34,9%, малопродуктивных — 41,9%. Но для того, чтобы очистить воду до требуемого уровня при приемлемых затратах, нужны эффективные технологии. Отсюда вытекает важность и актуальность рассматриваемой проблемы.

Кроме того, нельзя признать рациональным закачку в пласт в капельном виде части уже добытой нефти, которая так же приводит к снижению фазовой проницаемости принимающих воду нефтеносных горизонтов.

Наибольший ущерб нефтедобывающим подразделениям наносится ухудшением вытеснения нефти из малых пор и капилляров обычных и слабопродуктивных горизонтов, так как содержащая взвеси закачиваемая вода самокольматирует возможные для своего прохода каналы, оставляя в них нефть, которая в таких случаях остается потерянной навсегда.

Вместе с тем извлечение из закачиваемой воды тонко дисперсной части различного рода взвесей, размеры которых позволили бы исключить опасную для разработки месторождений кольматацию пористой среды экономически приемлемыми средствами, представляет собой исключительно сложную народно-хозяйственную проблему, как в научном, так и в практическом планах.

3a-e.ru

Установка отделения и очистки попутно добываемой с нефтью воды (варианты)

Изобретение относится к нефтяной промышленности, в частности к установкам предварительного сброса воды, и может использоваться на нефтепромыслах. Установка включает скважины с трубопроводом, отстойник, разделенный глухой перегородкой на секцию отделения воды от нефти, сообщенную с трубопроводом, и секцию отстаивания воды, сообщенную с системой ППД. Нефтесборный коллектор сообщен с обеими секциями, секция отделения воды от нефти и секция отстаивания воды сообщены трубопроводом загрязненной воды через регулирующий клапан и коалесцирующий фильтр. Контрольный датчик выполнен в виде межфазного уровнемера, расположенного в секции отделения воды от нефти. На трубопроводе может быть установлено устройство для предварительного отбора попутного нефтяного газа, оснащенное газосборным коллектором, который соединен с нефтесборным коллектором. Технический результат состоит в повышении эффективности разделения водонефтяной эмульсии на нефть и воду. 2 н. и 10 з.п. ф-лы, 1 ил.

 

Изобретение относится к нефтяной промышленности, в частности, к установкам предварительного сброса воды, и может использоваться на нефтепромыслах.

Известна установка для предварительного сброса воды (см. патент RU 2230594, В01В 17/00, опубл. Бюл. №17 от 20.06.2004 г.), включающая аппарат предварительного разделения продукции скважин на фазы с линиями отвода их в нефтяной и водяной сепараторы, буферные емкости для нефти и воды с насосами и подогреватель.

Недостатками известной схемы являются, во-первых, громоздкость установки, в частности, большое количество отстойного и емкостного оборудования, во-вторых, высокие капитальные и эксплуатационные затраты, в-третьих, нечеткое разделение жидкости в технологическом оборудовании на нефть и воду вследствие отсутствия подачи деэмульгатора в продукцию скважин (особенно для высоковязких нефтей).

Ближайшим техническим решением является установка для добычи, предварительного обезвоживания нефти и утилизации воды (авт. св. №1604393, B01D 17/00, опубл. БИ №41 от 07.11.1990 г.), включающая скважины, сепаратор, отстойник с нефтяным отсеком, нефтесборный коллектор, систему поддержания пластового давления и газосборный коллектор.

Недостатками данной установки для добычи, предварительного обезвоживания нефти и утилизации воды являются, во-первых, нечеткое разделение жидкости в сепараторе на нефть и воду вследствие наличия барботажа газа (особенно для нефтей с высоким газовым фактором) и отсутствия подачи деэмульгатора в продукцию скважин (особенно для высоковязких нефтей), во-вторых, сложность осуществления флотационной очистки воды в отстойнике вследствие необходимости получения пузырьков газа определенного размера, в-третьих, отсутствие автоматического контроля качества очищаемой воды.

Техническими задачами предлагаемого изобретения являются: достижение эффективного разделения водонефтяной эмульсии на нефть и воду, достижение эффективной очистки воды до необходимого качества, обеспечение автоматического контроля и регулирования качества очищаемой воды.

Технические задачи решаются установкой отделения и очистки попутно добываемой с нефтью воды, включающей скважины с трубопроводом, отстойник, разделенный перегородкой, сообщенный с системой поддержания пластового давления (ППД) через трубопровод очищенной воды и насос откачки воды, нефтесборный коллектор, контрольный датчик, соединенный функционально с регулирующим клапаном.

Новым является то, что перегородка в отстойнике выполнена «глухой», разделяющей его на секцию отделения воды от нефти, сообщенной с трубопроводом, и секцию отстаивания воды, сообщенной с системой ППД, при этом нефтесборный коллектор сообщен с обеими секциями с возможностью отбора нефти из их верхних точек, секция отделения воды от нефти и секция отстаивания воды сообщены трубопроводом загрязненной воды через регулирующий клапан и коалесцирующий фильтр для укрупнения капель нефти, а контрольный датчик выполнен в виде межфазного уровнемера, расположенного в секции отделения воды от нефти.

Технические задачи также решаются установкой отделения и очистки попутно добываемой с нефтью воды, включающей скважины с трубопроводом, отстойник, разделенный перегородкой, сообщенный с системой ППД через трубопровод очищенной воды, и насос откачки воды, нефтесборный и газосборный коллекторы, контрольный датчик, соединенный функционально с регулирующим клапаном.

Новым в ней является то, что перегородка в отстойнике выполнена «глухой», разделяющей его на секцию отделения воды от нефти, сообщенной с трубопроводом, и секцию отстаивания воды, сообщенной с системой ППД, при этом нефтесборный коллектор сообщен с обеими секциями с возможностью отбора нефти из их верхних точек, секция отделения воды от нефти и секция отстаивания воды сообщены трубопроводом загрязненной воды через регулирующий клапан и коалесцирующий фильтр для укрупнения капель нефти, а контрольный датчик выполнен в виде межфазного уровнемера, расположенного в секции отделения воды от нефти, при этом на трубопроводе установлено устройство для предварительного отбора попутного нефтяного газа, оснащенного газосборным коллектором, который соединен с нефтесборным коллектором.

Новым также является то, что перед отстойником на трубопроводе установлен коалесцер для разрушения эмульсии.

Новым также является то, что скважины оборудованы блоками подачи реагентов.

Новым также является то, что перед отстойником на трубопроводе очищенной воды установлен прибор автоматического контроля качества воды.

Новым также является то, что регулирующий клапан функционально связан с прибором автоматического контроля качества воды.

Новым также является то, что насос откачки оборудован частотным регулятором электродвигателя, функционально связанным с прибором автоматического контроля качества воды.

На чертеже представлена схема установки отделения и очистки попутно добываемой с нефтью воды.

Установка отделения и очистки попутно добываемой с нефтью воды включает скважины 1 с трубопроводом 2, отстойник 3, разделенный на две секции «глухой» перегородкой 4 (например, эллиптической): секцию 5 для отделения воды от нефти и секцию 6 для отстаивания воды, контрольный датчик 7, коалесцирующий фильтр 8 для очистки воды, нефтесборный коллектор 9, регулирующий клапан 10 на трубопроводе 11 загрязненной воды, насос 12 откачки воды. Скважины 1 могут быть оборудованы блоками 13 подачи реагента, после отстойника 3 на трубопроводе очищенной воды 14 может быть установлен прибор 15 автоматического контроля качества воды. Кроме этого, насос 12 откачки воды может быть оборудован частотным регулятором 16 электродвигателя 17. Перед отстойником 3 на трубопроводе 2 могут быть также установлены устройство 18 для предварительного отбора попутного нефтяного газа через газосборный коллектор 19 и/или коалесцер 20 для разрушения эмульсии.

Установка отделения и очистки попутно добываемой с нефтью воды работает следующим образом.

Продукция I скважин 1 поступает в секцию 5 для отделения воды от нефти отстойника 3. На скважинах 1 при необходимости (например, в случае поступления со скважин 1 устойчивой водонефтяной эмульсии) возможна установка блоков 13 подачи реагента для обработки продукции I скважин 1 реагентом II (например, деэмульгатор, ингибитор коррозии, ингибитор парафиноотложений и т.д.). Перед отстойником 3 при необходимости (например, в случае поступления нефти с высоким газовым фактором) возможна установка на трубопроводе 2 устройства 18 для предварительного отбора попутного нефтяного газа III, который по газосборному коллектору 19 направляется в нефтесборный коллектор 9. Перед отстойником 3 при необходимости (например, в случае поступления со скважин 1 устойчивой водонефтяной эмульсии) возможна также установка на трубопроводе 2 коалесцера 20 для разрушения эмульсии за счет укрупнения капель воды. В секции 5 отстойника 3 происходит разделение водонефтяной эмульсии на нефть и воду, при этом капли воды под действием гравитационной силы оседают вниз, а капли нефти поднимаются вверх. Отделившаяся нефть и попутный нефтяной газ общим потоком IV из секции 5 отстойника 3 направляются в нефтесборный коллектор 9. Межфазный уровень «вода - нефть» в секции 5 отстойника 3 регулируется с помощью регулирующего клапана 10, установленного на трубопроводе 11 загрязненной воды, сбрасываемой из секции 5. Сигнал на регулирующий клапан 10 подается с контрольного датчика 7, выполненного в виде межфазного уровнемера, расположенного в секции 5 отделения воды от нефти. Из секции 5 отстойника 3 отделившаяся загрязненная вода V поступает в коалесцирующий фильтр 8, установленный на трубопроводе 11 загрязненной воды. В коалесцирующем фильтре 8 происходит укрупнение оставшихся в воде мелких капель нефти за счет прохождения воды через специальный коалесцирующий материал. После этого вода направляется в секцию 6 отстойника 3 для отстаивания воды, где происходит окончательная доочистка воды от нефти. Уловленная в секции 6 отстойника 3 нефть VI периодически сбрасывается в нефтесборный коллектор 9. Очищенная вода VII из секции 6 отстойника 3 насосом 12 откачки воды направляется в систему ППД. При выходе очищенной воды VII по трубопроводу 14 очищенной воды из отстойника 3 при необходимости (например, в случае необходимости автоматического контроля качества воды) возможна установка на трубопроводе 14 очищенной воды прибора 15 автоматического контроля качества воды (например, прибор «СТОК»). При этом регулирование качества воды может осуществляться по показаниям прибора 15 автоматического контроля качества воды посредством изменения межфазного уровня «нефть - вода» в секции 5 отстойника 3 в ручном или автоматическом режимах через изменение степени открытия/закрытия регулирующего клапана 10. Насос 12 откачки воды при необходимости (например, в случае необходимости регулирования расхода откачиваемой очищенной воды VII) может быть оборудован частотным регулятором 16 электродвигателя 17. При этом регулирование качества воды может осуществляться по показаниям прибора 15 автоматического контроля качества воды посредством изменения межфазного уровня «нефть - вода» в секции 5 отстойника 3 через изменение расхода откачиваемой очищенной воды VII с помощью частотного регулятора 16 электродвигателя 17 насоса 12 откачки воды.

Предлагаемая установка отделения и очистки попутно добываемой с нефтью воды имеет следующие преимущества: достигается эффективное разделение водонефтяной эмульсии на нефть и воду за счет оборудования скважин блоками подачи реагентов, использования устройства для предварительного отбора попутного нефтяного газа и коалесцера для разрушения эмульсии; достигается эффективная очистка воды до необходимого качества за счет использования коалесцирующего фильтра для укрупнения капель нефти, обеспечивается автоматический контроль качества очищаемой воды, что позволяет более оперативно регулировать качество воды, направляемой в систему ППД.

1. Установка отделения и очистки попутно добываемой с нефтью воды, включающая скважины с трубопроводом, отстойник, разделенный перегородкой, сообщенный с системой поддержания пластового давления (ППД) через трубопровод очищенной воды, и насос откачки воды, нефтесборный коллектор, контрольный датчик, соединенный функционально с регулирующим клапаном, отличающаяся тем, что перегородка в отстойнике выполнена «глухой», разделяющей его на секцию отделения воды от нефти, сообщенную с трубопроводом, и секцию отстаивания воды, сообщенную с системой ППД, при этом нефтесборный коллектор сообщен с обеими секциями с возможностью отбора нефти из их верхних точек, секция отделения воды от нефти и секция отстаивания воды сообщены трубопроводом загрязненной воды через регулирующий клапан и коалесцирующий фильтр для укрупнения капель нефти, а контрольный датчик выполнен в виде межфазного уровнемера, расположенного в секции отделения воды от нефти.

2. Установка по п.1, отличающаяся тем, что перед отстойником на трубопроводе установлен коалесцер для разрушения эмульсии.

3. Установка по п.1 или 2, отличающаяся тем, что скважины оборудованы блоками подачи реагентов.

4. Установка по п.1, отличающаяся тем, что после отстойника на трубопроводе очищенной воды установлен прибор автоматического контроля качества воды.

5. Установка по п.4, отличающаяся тем, что регулирующий клапан функционально связан с прибором автоматического контроля качества воды.

6. Установка по п.4, отличающаяся тем, что насос откачки оборудован частотным регулятором электродвигателя, функционально связанным с прибором автоматического контроля качества воды.

7. Установка отделения и очистки попутно добываемой с нефтью воды, включающая скважины с трубопроводом, отстойник, разделенный перегородкой, сообщенный с системой ППД через трубопровод очищенной воды и насос откачки воды, нефтесборный и газосборный коллекторы, контрольный датчик, соединенный функционально с регулирующим клапаном, отличающаяся тем, что перегородка в отстойнике выполнена «глухой», разделяющей его на секцию отделения воды от нефти, сообщенную с трубопроводом, и секцию отстаивания воды, сообщенную с системой ППД, при этом нефтесборный коллектор сообщен с обеими секциями с возможностью отбора нефти из их верхних точек, секция отделения воды от нефти и секция отстаивания воды сообщены трубопроводом загрязненной воды через регулирующий клапан и коалесцирующий фильтр для укрупнения капель нефти, а контрольный датчик выполнен в виде межфазного уровнемера, расположенного в секции отделения воды от нефти, при этом на трубопроводе установлено устройство для предварительного отбора попутного нефтяного газа, оснащенное газосборным коллектором, который соединен с нефтесборным коллектором.

8. Установка по п.7, отличающаяся тем, что перед отстойником на трубопроводе установлен коалесцер для разрушения эмульсии.

9. Установка по п.7 или 8, отличающаяся тем, что скважины оборудованы блоками подачи реагентов.

10. Установка по п.7, отличающаяся тем, что после отстойника на трубопроводе очищенной воды установлен прибор автоматического контроля качества воды.

11. Установка по п.10, отличающаяся тем, что регулирующий клапан функционально связан с прибором автоматического контроля качества воды.

12. Установка по п.10, отличающаяся тем, что насос откачки оборудован частотным регулятором электродвигателя, функционально связанным с прибором автоматического контроля качества воды.

www.findpatent.ru

Попутная пластовая вода - Большая Энциклопедия Нефти и Газа, статья, страница 1

Попутная пластовая вода

Cтраница 1

Огромные запасы попутных и пластовых вод с пром.  [1]

Если в попутной пластовой воде содержится большое количество ионов хлора, то добиться снижения массовой концентрации хлористых солей в товарной нефти до 100 мг / л только за счет ее обезвоживания часто не удается, например для месторождений Урало-Поволжья, Беларуси и других районов.  [2]

Можно предположить, что попутная пластовая вода при таком типе коллектора поступит в трещины из пористой матрицы и вместе с нефтью - в ствол скважины.  [3]

Нефть, нефтяной газ, попутная пластовая вода с очень большой натяжкой и в специфическом контексте могут быть названы компонентами.  [4]

Это позволяет существенно сократить добычу попутной пластовой воды, в результате чего на поздней стадии разработки уже, наоборот, малоактивные системы заводнения обеспечивают меньшую степень обводненности при одинаковой выработке извлекаемых запасов нефти.  [6]

Из-за отсутствия возможности полной утилизации попутных пластовых вод через систему ППД в серпуховский горизонт закачано почти 30 млн. м3 сточной воды, в результате чего пластовое давление превысило гидростатическое. Однако вопрос о том, какая из перечисленных причин является преобладающей, остался открытым.  [7]

Зольненского месторождения добыто незначительное количество попутной пластовой воды.  [8]

Если невозможно использовать для заводнения попутную пластовую воду, целесообразно в начальный период заводнения обрабатывать закачиваемую воду специальными веществами для повышения ее вымывающей способности и вязкости.  [9]

В процессе нефтепромысловой практики подготовки скважинной продукции установлено, что попутная пластовая вода, находящаяся в нефти в диспергированном состоянии ( обратная водонефтяная эмульсия), в процессе ее расслоения практически не содержит каких-либо взвешенных веществ.  [10]

Современные тенденции организации сбора и промысловой подготовки нефти, нефтяного газа и попутной пластовой воды существенно повышают требования к качеству исходной информации при проектировании объектов промыслового обустройства, анализе эффективности их эксплуатации. Отсутствие экспериментальной информации по физико-химическим свойствам скважинкой продукции в условиях неопределенности состава добываемой нефти из многопластовых эксплуатационных объектов определяют необходимость повсеместного использования аналитических и корреляционных зависимостей их расчета.  [11]

Поэтому роль поверхностных явлений во всех основных процессах подготовки нефти, нефтяного газа и попутной пластовой воды становится определяющей.  [12]

Сущность процесса обессоливания промысловой нефти заключает - ся в снижении кониентраиии хлористых солей в капельной попутной пластовой воде, которая осталась в промысловой нефти после ее предварительного и глубокого обезвоживания. Снижение концентрации хлористых солей в капельной пластовой воде, представляющей собой дисперсную фазу в обратной водонефтяной эмульсии ( промысловой нефти), возможно только в результате коалесиенши их с каплями промывной воды, в качестве которой, как правило, используется пресная вода.  [13]

Гелеобразующие композиции получают путем растворения при перемешивании нефелина в растворе соляной кислоты, приготовленной на пресной или минерализованной попутной пластовой воде.  [14]

Гслеобразующие композиции получают путем растворения при перемешивании нефелина в растворе соляной кислоты, приготовленной на пресной или минерализованной попутной пластовой воде.  [15]

Страницы:      1    2    3

www.ngpedia.ru

Установка подготовки попутно добываемой пластовой воды

Изобретение относится к оборудованию для подготовки попутно добываемой пластовой воды в системе сбора нефти, газа и воды. Установка включает трубопровод 3 подачи добываемой газо-жидкостной смеси (ГЖС) в блок сепарации ГЖС 1, трубопровод отвода ГЖС 10 из блока сепарации ГЖС 1, блок подготовки воды 2, оснащенный фильтром 6 для очистки от механических примесей, трубопровод отвода воды 5. Блок сепарации ГЖС 1 представляет собой трубный водоотделитель (ТВО) - для газового фактора ГЖС от 100 до 400 м3/м3 или узел фазового разделения эмульсии (УФРЭ) - для газового фактора ГЖС от 20 до 100 м3/м3, или трубный отстойник-сепаратор (ТОС - для газового фактора менее 20 м3/м3, причем до ТВО или УФРЭ установлен успокоитель-депульсатор потока ГЖС 11, оснащенный трубопроводом отвода газа 12 в блок сепарации 1, а блок подготовки воды 2 представляет собой закрытую с концов горизонтальную трубу, а трубопровод ввода в нее нефтесодержащей воды 4, поступающей из блока сепарации 1, соединен с тем концом горизонтальной трубы, в котором установлен в качестве фильтра пакет параллельных пластин 6, соединенный с колпаком для сбора механических примесей 7 через отверстие снизу горизонтальной трубы, причем колпак для сбора выделившихся газа и нефти 8 установлен после пакета параллельных пластин 6, в верхней части горизонтальной трубы, а трубопровод отвода выделившихся газа и нефти 9 из колпака 8 для их сбора в блок сепарации 1 выполнен горизонтальным и находится выше уровня трубопровода подачи добываемой ГЖС 3 в блок сепарации 1 соответственно из успокоителя-депульсатора потока ГЖС в ТВО или в УФРЭ или непосредственно в ТОС. При применении в качестве блока сепарации ГЖС узла фазового разделения эмульсии (УФРЭ) трубопроводы ввода в горизонтальную трубу нефтесодержащей воды установлены с обоих концов горизонтальной трубы, в каждом из которых установлен в качестве фильтра пакет параллельных пластин, соединенный с колпаком для сбора механических примесей через отверстие снизу горизонтальной трубы. Технический результат - повышение эффективности установки за счет обеспечения проточного режима ее эксплуатации и улучшения качества сепарации и подготовки при упрощении установки по конструкции, в том числе по количеству средств автоматики и КИП, при снижении ее металлоемкости. 1 з.п. ф-лы, 4 ил.

 

Заявляемое изобретение относится к оборудованию для нефтедобывающей промышленности, а именно к оборудованию для подготовки попутно добываемой пластовой воды в системе сбора нефти, газа и воды, для организации подготовки отделенной пластовой воды до соответствия требованиям ОСТ 39-225-88 «Вода для заводнения нефтяных пластов. Требования к качеству». Данное техническое решение может быть также использовано, например, на площадках групповых замерных установок (ГЗУ) и площадках дожимных насосных станций (ДНС).

Известна сепарационная установка (патент РФ №2238783, опубл. 27.10.2004 - прототип), включающая наклонную колонну, разделенную распределителем потока на нефтеотстойную и водоотстойную секции трубопроводом подвода газожидкостной смеси (ГЖС), трубопроводы отвода газа, нефти и воды, трубопровод подвода ГЖС, состоящий из восходящего трубопровода, успокоительного горизонтального трубопровода, расположенного выше верхней точки наклонной колонны с фильтром, размещенным вдоль ее оси, и снабженного газосборником, нисходящего трубопровода и горизонтального трубопровода ввода ГЖС, при этом горизонтальный трубопровод размещен над распределителем потока, выполненным в виде просечно-вытяжного листа с бортами и установленным горизонтально, дополнительно установка снабжена трубным расширителем, который соединен с восходящим трубопроводом и содержит газосборник, кроме того, трубный расширитель, горизонтальный участок трубопровода подвода ГЖС и наклонная колонна снабжены пескоуловителями, соединенными с единым сборным коллектором мехпримесей.

Данная установка может использоваться для раннего предварительного сброса и подготовки воды, например, непосредственно на кусте скважин, так как кроме блока собственно сепарации добываемой газо-жидкостной смеси, осуществляемой в сложной многоуровневой системе трубопроводов и в наклонной колонне, разделенной распределителем потока на нефтеотстойную и водоотстойную секции, содержит в качестве блока подготовки воды нижнюю водоотстойную часть наклонной колонны с фильтром, размещенным вдоль ее оси. Согласно описанию прототипа, вода, отстоявшаяся от частиц нефти и мехпримесей, проходит через фильтр и выводится через трубопровод из нижней части наклонной колонны.

К недостаткам прототипа, очевидно, предназначенного для сепарации добываемых жидкостей со значительно различающимися значениями газового фактора и степеней загрязнения, относится сложность конструкции установки с четырьмя газоотводными трубопроводами и с четырьмя пескоотводами. Соответственно, конструкцию отличает высокая металлоемкость. Сложная многоуровневая система трубопроводов и наклонная колонна, разделенная распределителем потока на нефтеотстойную и водоотстойную секции, требуют привлечения большого количества средств автоматики и контрольно-измерительных приборов (КИП) и не способны функционировать в проточном режиме.

Решаемая задача и ожидаемый технический результат заключаются в повышении эффективности установки за счет обеспечения проточного режима ее эксплуатации и улучшения качества сепарации и подготовки при упрощении установки по конструкции, в том числе по количеству средств автоматики и КИП, и при снижении ее металлоемкости. При этом в заявляемой установке исключена вероятность перетока отделившейся воды из блока подготовки в блок сепарации, что повышает эффективность подготовки воды. Для улучшения качества сепарации рекомендуется применение наиболее эффективной конструкции блока сепарации для каждого из возможных интервалов газосодержания сепарируемой ГЖС, а для более эффективной подготовки воды - оснащение блока подготовки фильтром в виде пакета параллельных пластин с возможностью очистки не только от механических примесей, но и от нефтепродуктов.

Поставленная задача решается тем, что в установке подготовки попутно добываемой пластовой воды, включающей трубопровод подачи добываемой газожидкостной смеси (ГЖС) в блок сепарации ГЖС, трубопровод отвода ГЖС из блока сепарации ГЖС, блок подготовки воды, оснащенный фильтром для очистки от механических примесей, трубопровод отвода воды, согласно изобретению блок сепарации ГЖС представляет собой трубный водоотделитель (ТВО) - для газового фактора ГЖС от 100 до 400 м3/м3, или узел фазового разделения эмульсии (УФРЭ) - для газового фактора ГЖС от 20 до 100 м3/м3, или трубный отстойник-сепаратор (ТОС) - для газового фактора менее 20 м3/м3, причем до ТВО или УФРЭ установлен успокоитель-депульсатор потока ГЖС, оснащенный трубопроводом отвода газа в блок сепарации, а блок подготовки воды представляет собой закрытую с концов горизонтальную трубу, трубопровод ввода в нее нефтесодержащей воды, поступающей из блока сепарации, соединен с тем концом горизонтальной трубы, в котором установлен в качестве фильтра пакет параллельных пластин, соединенный с колпаком для сбора механических примесей через отверстие снизу горизонтальной трубы, причем колпак для сбора выделившихся газа и нефти установлен после пакета параллельных пластин, в верхней части горизонтальной трубы, а трубопровод отвода выделившихся газа и нефти из колпака для их сбора в блок сепарации выполнен горизонтальным и находится выше уровня трубопровода подачи добываемой ГЖС в блок сепарации, соответственно, из успокоителя-депульсатора потока ГЖС в ТВО или в УФРЭ или непосредственно в ТОС. Кроме того, при применении в качестве блока сепарации ГЖС узла фазового разделения эмульсии (УФРЭ) трубопроводы ввода в горизонтальную трубу нефтесодержащей воды установлены с обоих концов горизонтальной трубы, в каждом из которых установлен в качестве фильтра пакет параллельных пластин, соединенный с колпаком для сбора механических примесей через отверстие снизу горизонтальной трубы.

Конструкции ТВО, УФРЭ и ТОС известны; например ТВО - по патенту РФ №2291734 (опубл. 20.01.2007), УФРЭ - по патенту РФ №2285555 (опубл. 20.10.2006), ТОС - по патенту РФ №2089259 (опубл. 10.09.1997).

Успокоитель-депульсатор потока ГЖС представляет из себя горизонтальную трубу, как, например, в установке сброса воды по патенту РФ №2098166 (опубл. 10.12.1997).

Признак заявляемой установки «трубопровод отвода выделившихся газа и нефти из колпака для их сбора в блок сепарации выполнен горизонтальным и находится выше уровня трубопровода подачи добываемой ГЖС соответственно из успокоителя-депульсатора потока ГЖС в ТВО или в УФРЭ или непосредственно в ТОС» обеспечивает, в отличие от прототипа, условие работы установки в проточном режиме и с привлечением минимума средств автоматики и КИП; принцип сообщающихся сосудов обеспечивает самостоятельный переток выделившегося газа и нефти из колпака блока подготовки воды в блок сепарации и, соответственно, исключает вероятность перетока очищенной от газа и нефти воды из блока подготовки в блок сепарации; что повышает качество подготовки воды.

Схема установки представлена на фиг. 1. На фиг. 2, 3, 4 представлены соответственно варианты ее выполнения с применением в качестве блока сепарации ГЖС ТВО, УФРЭ или ТОС.

На фиг. 1:

1 - блок сепарации ГЖС

2 - блок подготовки воды - горизонтальный трубный отстойник воды (ТОВ)

3 - трубопровод подачи добываемой ГЖС в блок сепарации 1

4 - трубопровод ввода нефтесодержащей воды в блок подготовки воды - горизонтальный ТОВ 2

5 - трубопровод отвода воды

6 - пакет параллельных пластин

7 - колпак для сбора мехпримесей

8 - колпак для сбора выделившихся газа и нефти

9 - трубопровод отвода выделившихся газа и нефти из колпака 8 в блок сепарации 1

10 - трубопровод отвода ГЖС из блока сепарации 1

На фиг. 2:

1 - блок сепарации ГЖС - трубный водоотделитель (ТВО)

2 - блок подготовки воды - горизонтальный трубный отстойник воды (ТОВ)

3 - трубопровод подачи добываемой ГЖС в ТВО 1

4 - трубопровод ввода нефтесодержащей воды в горизонтальный ТОВ 2

5 - трубопровод отвода воды

6 - пакет параллельных пластин

7 - колпак для сбора мехпримесей

8 - колпак для сбора выделившихся газа и нефти

9 - трубопровод отвода выделившихся газа и нефти из колпака 8 в ТВО 1

10 - трубопровод отвода ГЖС из ТВО 1

11 - успокоитель-депульсатор потока ГЖС

12 - трубопровод отвода газа из успокоителя-депульсатора 11 в ТВО 1

13 - трубопровод подачи добываемой ГЖС в успокоитель-депульсатор 11

На фиг. 3:

1 - блок сепарации ГЖС - узел фазового разделения эмульсий (УФРЭ)

2 - блок подготовки воды - горизонтальный трубный отстойник воды (ТОВ)

3 - трубопровод подачи добываемой ГЖС в УФРЭ 1

4 - трубопровод ввода нефтесодержащей воды в горизонтальный ТОВ 2

5 - трубопровод отвода воды

6 - пакет параллельных пластин

7 - колпак для сбора мехпримесей

8 - колпак для сбора выделившихся газа и нефти

9 - трубопровод отвода выделившихся газа и нефти из колпака 8 в УФРЭ 1

10 - трубопровод отвода ГЖС из УФРЭ 1

11 - успокоитель-депульсатор потока ГЖС

12 - трубопровод отвода газа из успокоителя-депульсатора 11 в УФРЭ 1

13 - трубопровод подачи добываемой ГЖС в успокоитель-депульсатор 11

На фиг. 4:

1 - блок сепарации ГЖС - трубный отстойник сепаратор (ТОС)

2 - блок подготовки воды - горизонтальный трубный отстойник воды (ТОВ)

3 - трубопровод подачи добываемой ГЖС в ТОС 1

4 - трубопровод ввода нефтесодержащей воды в горизонтальный ТОВ 2

5 - трубопровод отвода воды

6 - пакет параллельных пластин

7 - колпак для сбора мехпримесей

8 - колпак для сбора выделившихся газа и нефти

9 - трубопровод отвода выделившихся газа и нефти из колпака 8 в ТОС 1

10 - трубопровод отвода ГЖС из ТОС 1

Установка по фиг. 1 состоит из двух блоков - блока сепарации 1 и блока подготовки воды 2, а также трубопровода 3 подачи добываемой ГЖС в блок сепарации 1, трубопровода 4 ввода нефтесодержащей воды в блок подготовки воды 2, трубопровода отвода воды 5 из блока подготовки воды 2, причем блок 2 оснащен пакетом параллельных пластин 6 с колпаком для сбора мехпримесей 7 и колпаком для сбора выделившихся газа и нефти 8; и трубопровода отвода выделившихся газа и нефти 9 из колпака 8 в блок сепарации 1.

Добываемая ГЖС поступает в блок сепарации 1 по трубопроводу 3 подачи добываемой ГЖС; в блоке 1 под действием гравитационных сил нефтяная составляющая добываемой ГЖС займет верхнюю часть блока сепарации 1, а водяная составляющая - нижнюю часть блока сепарации 1. Таким образом, будут сформированы нефтеотстойная и водоотстойная части блока сепарации 1 (Фиг. 1). Отделившаяся в блоке сепарации 1 вода из водоотстойной части поступает по трубопроводу 4 ввода нефтесодержащей воды в блок подготовки воды 2 на очистку от мехпримесей и нефтепродуктов. Блок подготовки воды 2 выполнен в виде закрытой с концов горизонтальной трубы с установленным внутри пакетом параллельных пластин 6, выполненным с возможностью очистки воды от мехпримесей и от нефтепродуктов. Отделившая в блоке 1 вода, поступившая в блок подготовки воды 2, направляется в пакет параллельных пластин 6, где происходит очистка воды от механических примесей и нефтепродуктов. Отделенные механические примеси скапливаются в колпаке для сбора мехпримесей 7, откуда происходит их периодическая откачка. Отделенные от воды в пакете параллельных пластин 6 газ и нефтепродукты занимают верхний граничный слой блока 2 - горизонтальной трубы и скапливаются в колпаке 8 для сбора выделившихся газа и нефти, соединенном трубопроводом 9 отвода выделившихся газа и нефти с блоком сепарации 1. Колпак для сбора выделившихся газа и нефти 8 выполнен таким образом, чтобы обеспечить условие самостоятельного перетока выделившихся газа и нефтепродуктов из колпака 8 для сбора выделившегося газа и нефти в блок сепарации 1. Для этого колпак 8 выполняется такой высоты, чтобы трубопровод 9 отвода выделившихся газа и нефти был расположен горизонтально и находился выше уровня входа трубопровода 3 подачи добываемой ГЖС в блок сепарации 1. В таких условиях в соответствии с принципом сообщающихся сосудов очищенная от мехпримесей и нефти в блоке 2 вода, наоборот, не может попасть назад в блок 1 и отводится по трубопроводу 5 отвода воды.

Газ и нефтепродукты, отделившиеся в блоке 2 через колпак 8, поступают по трубопроводу 9 в блок сепарации 1, откуда выводятся по трубопроводу 10 отвода ГЖС.

Установка по фиг. 2 оснащена трубным водоотделителем (ТВО) в качестве блока сепарации 1. Добываемая ГЖС по трубопроводу 13 поступает в успокоитель-депульсатор 11, где происходит гашение пульсаций потока ГЖС и отделение основного потока ГЖС от попутного нефтяного газа (ПНГ), находящегося в свободном состоянии. Отделенный ПНГ по трубопроводу 12 отвода газа поступает в ТВО 1.

ГЖС из успокоителя-депульсатора 11 по трубопроводу 3 подачи добываемой ГЖС поступает на верх наклонной трубы ТВО 1, где под действием гравитационных сил нефтяная составляющая ГЖС займет верхнюю часть ТВО 1, а водная составляющая - нижнюю часть ТВО 1. Таким образом будут сформированы нефтеотстойная и водоотстойная части ТВО 1 (Фиг. 2). Отделившаяся в ТВО 1 вода из водоотстойной части поступает по трубопроводу 4 ввода нефтесодержащей воды в горизонтальный ТОВ 2 на очистку от мехпримесей и нефтепродуктов 2. ТОВ 2 выполнен в виде закрытой с концов горизонтальной трубы с установленным внутри пакетом параллельных пластин 6, выполненным с возможностью очистки воды от мехпримесей и от нефтепродуктов. Отделившая в ТВО 1 вода, поступившая в горизонтальный ТОВ 2, направляется в пакет параллельных пластин 6, где происходит очистка воды от механических примесей и нефтепродуктов. Отделенные механические примеси скапливаются в колпаке 7 для сбора мехпримесей, откуда происходит их периодическая откачка. Отделенные от воды в пакете параллельных пластин 6 газ и нефтепродукты занимают верхний граничный слой горизонтального ТОВ 2 и скапливаются в колпаке 8 для сбора выделившихся газа и нефти, соединенном трубопроводом 9 отвода выделившихся газа и нефти с ТВО 1. Колпак 8 для сбора выделившихся газа и нефти выполнен таким образом, чтобы обеспечить условие самостоятельного перетока выделившихся газа и нефти из колпака 8 в ТВО 1. Для этого колпак 8 для сбора выделившихся газа и нефти выполняется такой высоты, чтобы трубопровод 9 отвода выделившихся газа и нефти был расположен горизонтально и находился выше уровня входа трубопровода 3 подачи добываемой ГЖС из успокоителя-депульсатора 11 в ТВО 1. В таких условиях в соответствии с принципом сообщающихся сосудов очищенная от мехпримесей и нефти в горизонтальном ТОВ 2 вода, наоборот, не может попасть назад в ТВО 1 и отводится по трубопроводу 5 отвода воды.

Поступая в ТВО 1, отделившиеся в горизонтальном ТОВ 2 через колпак 8 газ и нефтепродукты, затем выводятся из ТВО 1 по трубопроводу 10 отвода ГЖС.

Установка по фиг. 3 оснащена в качестве блока сепарации 1 узлом фазового разделения эмульсий (УФРЭ), представляющим собой две наклонные трубы, соединенные горизонтальным участком. Добываемая ГЖС по трубопроводу 13 поступает в успокоитель-депульсатор 11, где происходит гашение пульсаций потока ГЖС и отделение основного потока ГЖС от попутного нефтяного газа (ПНГ), находящегося в свободном состоянии. Отделенный ПНГ по трубопроводам отвода газа 12 поступает в УФРЭ 1.

ГЖС из успокоителя-депульсатора 11 по трубопроводам 3 подачи добываемой ГЖС поступает на верх УФРЭ 1, где под действием гравитационных сил нефтяная составляющая добываемой ГЖС займет верхнюю часть УФРЭ 1, а водная составляющая - нижнюю часть УФРЭ 1. Таким образом, ввиду конструкции УФРЭ будут сформированы одна нефтеотстойная и две водоотстойные части УФРЭ 1 (Фиг. 3). Отделившаяся в УФРЭ 1 вода из водоотстойных частей поступает по трубопроводам 4 ввода нефтесодержащей воды в горизонтальный ТОВ 2 на очистку от мехпримесей и нефтепродуктов. Горизонтальный ТОВ 2 выполнен виде закрытой с концов горизонтальной трубы с установленными внутри с обоих концов пакетами параллельных пластин 6, выполненными с возможностью очистки воды от мехпримесей и от нефтепродуктов. Организация двух отдельных входов отделившейся в УФРЭ 1 воды с двух концов горизонтального ТОВ 2, обусловленная конструкцией УФРЭ, способствует снижению габаритных размеров и металлоемкости установки в целом. Отделившая в УФРЭ 1 вода, поступившая с двух концов в горизонтальный ТОВ 2, направляется в пакеты параллельных пластин 6, где происходит очистка воды от механических примесей и нефтепродуктов. Отделенные механические примеси скапливаются в колпаках 7 для сбора мехпримесей, откуда происходит их периодическая откачка. Отделенные от воды в пакетах параллельных пластин 6, газ и нефтепродукты занимают верхний граничный слой горизонтального ТОВ 2 и скапливаются в колпаке 8 для сбора выделившихся газа и нефти, соединенном трубопроводом 9 отвода выделившихся газа и нефти с УФРЭ 1. Колпак 8 для сбора выделившихся газа и нефти выполнен таким образом, чтобы обеспечить условие самостоятельного перетока выделившихся газа и нефтепродуктов из колпака 8 в УФРЭ 1. Для этого колпак 8 выполняется такой высоты, чтобы трубопровод 9 отвода выделившихся газа и нефти был расположен горизонтально и находился выше уровня входа трубопроводов 3 подачи добываемой ГЖС из успокоителя-депульсатора 11 в УФРЭ 1. В таких условиях в соответствии с принципом сообщающихся сосудов очищенная от мехпримесей и нефти в горизонтальном ТОВ 2 вода, наоборот, не может попасть назад в УФРЭ 1 и отводится по трубопроводу 5 отвода воды.

Поступая в УФРЭ 1, отделившиеся через колпак 8 в горизонтальном ТОВ 2 газ и нефтепродукты затем выводятся из УФРЭ 1 по трубопроводу 10 отвода ГЖС.

Установка по фиг. 4 оснащена в качестве блока сепарации 1 трубным отстойником-сепаратором (ТОС). Добываемая ГЖС по трубопроводу 3 подачи добываемой ГЖС поступает в ТОС 1, где под действием гравитационных сил нефтяная составляющая добываемой ГЖС займет верхнюю часть ТОС 1, а водная составляющая - нижнюю часть ТОС 1. Таким образом, будут сформированы нефтеотстойная и водоотстойная части ТОС 1 (Фиг. 4). Отделившаяся в ТОС 1 вода из водоотстойной части поступает по трубопроводу 4 ввода нефтесодержащей воды в горизонтальный ТОВ 2 на очистку от мехпримесей и нефтепродуктов. Горизонтальный ТОВ 2 выполнен в виде закрытой с концов горизонтальной трубы с установленным внутри пакетом параллельных пластин 6, выполненным с возможностью очистки воды от мехпримесей и от нефтепродуктов. Отделившаяся в ТОС 1 вода, поступившая в горизонтальный ТОВ 2, направляется в пакет параллельных пластин 6, где происходит очистка воды от механических примесей и нефтепродуктов. Отделенные механические примеси скапливаются в колпаке 7 для сбора мехпримесей, откуда происходит их периодическая откачка. Отделенные от воды в пакете параллельных пластин 6 газ и нефтепродукты занимают верхний граничный слой горизонтального ТОВ 2 и скапливаются в колпаке 8 для сбора выделившихся газа и нефти, соединенном трубопроводом 9 отвода выделившихся газа и нефти с ТОС 1. Колпак 8 для сбора выделившихся газа и нефти выполнен таким образом, чтобы обеспечить условие самостоятельного перетока выделившихся газа и нефтепродуктов из колпака 8 в ТОС 1. Для этого колпак 8 выполняется такой высоты, чтобы трубопровод 9 отвода выделившихся газа и нефти был расположен горизонтально и находился выше уровня входа трубопровода 3 подачи добываемой ГЖС в ТОС 1. В таких условиях, в соответствии с принципом сообщающихся сосудов, очищенная от мехпримесей и нефти в горизонтальном ТОВ 2 вода, наоборот, не может попасть назад в ТОС 1 и отводится по трубопроводу 5 отвода воды.

Поступая в ТОС 1, отделившиеся в горизонтальном ТОВ 2 через колпак 8 газ и нефтепродукты, затем выводятся из ТОС 1 по трубопроводу 10 отвода ГЖС.

Таким образом, обеспечен проточный режим эксплуатации установки и улучшено качество сепарации и подготовки при упрощении установки по конструкции, в том числе по количеству средств автоматики и КИП, при снижении металлоемкости. При этом в заявляемой установке исключена вероятность перетока отделившейся воды из блока подготовки в блок сепарации, что повышает эффективность раннего сброса и качество подготовки воды. Для улучшения качества сепарации рекомендуется применение наиболее эффективной конструкции блока сепарации для каждого из возможных интервалов газосодержания сепарируемой ГЖС, а для более эффективной подготовки воды - оснащение блока подготовки фильтром в виде пакета параллельных пластин с возможностью очистки не только от механических примесей, но и от нефтепродуктов.

1. Установка подготовки попутно добываемой пластовой воды, включающая трубопровод подачи добываемой газо-жидкостной смеси (ГЖС) в блок сепарации ГЖС, трубопровод отвода ГЖС из блока сепарации ГЖС, блок подготовки воды, оснащенный фильтром для очистки от механических примесей, трубопровод отвода воды, отличающаяся тем, что блок сепарации ГЖС представляет собой трубный водоотделитель (ТВО) - для газового фактора ГЖС от 100 до 400 м3/м3, или узел фазового разделения эмульсии (УФРЭ) - для газового фактора ГЖС от 20 до 100 м3/м3, или трубный отстойник-сепаратор (ТОС) - для газового фактора менее 20 м3/м3, причем до ТВО или УФРЭ установлен успокоитель-депульсатор потока ГЖС, оснащенный трубопроводом отвода газа в блок сепарации, а блок подготовки воды представляет собой закрытую с концов горизонтальную трубу, трубопровод ввода в нее нефтесодержащей воды, поступающей из блока сепарации, соединен с тем концом горизонтальной трубы, в котором установлен в качестве фильтра пакет параллельных пластин, соединенный с колпаком для сбора механических примесей через отверстие снизу горизонтальной трубы, причем колпак для сбора выделившихся газа и нефти установлен после пакета параллельных пластин, в верхней части горизонтальной трубы, а трубопровод отвода выделившихся газа и нефти из колпака для их сбора в блок сепарации выполнен горизонтальным и находится выше уровня трубопровода подачи добываемой ГЖС в блок сепарации соответственно из успокоителя-депульсатора потока ГЖС в ТВО или в УФРЭ или непосредственно в ТОС.

2. Установка по п. 1, отличающаяся тем, что при применении в качестве блока сепарации ГЖС узла фазового разделения эмульсии (УФРЭ) трубопроводы ввода в горизонтальную трубу нефтесодержащей воды установлены с обоих концов горизонтальной трубы, в каждом из которых установлен в качестве фильтра пакет параллельных пластин, соединенный с колпаком для сбора механических примесей через отверстие снизу горизонтальной трубы.

www.findpatent.ru