Справочник химика 21. Вязкость паров нефти


Вязкости паров нефтепродуктов - Справочник химика 21

    Для расчетов коэффициентов теплопередачи, чисел Рейнольдса, потери напора и других величин при проектировании нефтеперерабатывающей аппаратуры необходимо знать вязкости паров нефтепродуктов. [c.433]

    Вязкости паров нефтепродуктов [c.435]

    Важной технической характеристикой мазутов является температура застывания. Благодаря высокой вязкости остаточных нефтепродуктов и присутствию в них твердых углеводородов и смол топочные мазуты застывают при температуре выше 0° С (от 5 до 35° С для разных марок). Эта константа определяет технику нрименения данного сорта топлива в конкретных условиях предприятий. Во время транспортировки и при разогреве острым паром мазуты сильно обводняются. Наличие воды ухудшает процесс сгорания топлива, снижает к. п. д. установки, приводит к отложению солей и усиливает коррозию, особенно в случае применения сернистых сортов мазута. Нормами допускается содержание воды не более 1—2%. Кроме того, в котельном топливе нормируется содержание механических примесей, которые могут нарушить работу форсунок температура вспышки, характеризующая пожарную безопасность топлива зольность и содержание водорастворимых кислот и щелочей (должны отсутствовать). [c.139]

    Вязкость паров воды при 475°С составляет 0.025- кгс-с/м [7]. Вязкость смеси паров нефтепродуктов и воды [c.42]

    При исследовании очистки нефтесодержащих стоков Куйбышевского нефтеперерабатывающего завода на фильтрах с керамзитовой загрузкой регенерацию проводили путем периодической подачи острого пара для снижения вязкости задержанных нефтепродуктов и холодной воды при выносе их в канализацию, При этом стоимость регенерации по разработанной технологии получилась не большей, чем по применявшейся ранее для фильтров с кварцевым песком. [c.83]

    На установках первичной переработки нефти достигнута высокая степень автоматизации. Так, на заводских установках используют автоматические анализаторы качества ( на потоке ), определяющие содержание воды и солей в нефти, температуру вспышки авиационного керосина, дизельного топлива, масляных дистиллятов, температуру выкипания 90 % (масс.) пробы светлого нефтепродукта, вязкость масляных фракций, содержание продукта в сточных водах. Некоторые из анализаторов качества включаются в схемы автоматического регулирования. Например, подача водяного пара в низ отпарной колонны автоматически корректируется по температуре вспышки дизельного топлива, определяемой с помощью автоматического анализатора температуры вспышки. Для автоматического непрерывного определения и регистрации состава газовых потоков применяют хроматографы. [c.12]

    Практические занятия - 4ч. Решение примеров расчета вязкости нефтепродуктов и их смесей, теплоты испарения, теплоёмкости, энтальпии паров и жидкости. [c.371]

    Пособие состоит из введения и двух разделов. Введение Расчетные методы определения физико-химических свойств и состава нефтей и нефтепродуктов посвящено аналитическим и графическим методам определения и пересчета различных характеристик нефтей и нефтепродуктов относительной плотности, молекулярной массы, давления насыщенных паров, вязкости, тепловых свойств и компонентного состава. [c.5]

    На скорость испарения нефтепродуктов оказывают влияние давление насыщенных паров, фракционный состав и средняя температура кипения, коэффициент диффузии, теплоемкость, теплопроводность, теплота испарения, поверхностное натяжение. Косвенное влияние оказывают вязкость, плотность и другие свойства нефтепродуктов. [c.27]

    Первая из них характеризует эксплуатационные свойства нефтепродукта по своему основному назначению. Так, для бензинов — это фракционный состав, детонационная стойкость, сортность, давление насыщенных паров, индукционный период. В случае масел к таким показателям можно отнести — вязкость, вязкостно-темпера-турную зависимость, температуру застывания, температуру вспышки и смазывающие свойства. [c.216]

    Все модификации аппаратов АВГ и АВЗ используют для конденсации паров и охлаждения нефтепродуктов с вязкостью на выходе из аппарата не более 50 мм/с. Для более вязких продуктов (мазуты, масла, вакуумные газойли) выпускаются соответствующие модификации аппаратов  [c.550]

    Настоящий стандарт распространяется на легкие нефтепродукты с упругостью паров до 700 мм рт. ст. включительно и нефтяные масла с кинематической вязкостью не более 22 сСт при 100° С и устанавливает метод определения содержания серы сжиганием в лампе. [c.195]

    Широко используемые методы определения качества смазок, а также других нефтепродуктов (вязкость условная — ГОСТ 6258—52 и кинематическая — ГОСТ 33—66 температура застывания — ГОСТ 20287—74 температура вспышки в открытом тигле — ГОСТ 4333—48 испаряемость — ГОСТ 9566—74 давление насыщенных паров — ГОСТ 15823—70 защитные свойства — ГОСТ 4699—53 и ГОСТ 9. 054—75 устойчивость к воздействию плесневых грибов — ГОСТ 9.052—75 противозадирные свойства — ГОСТ 9490—75 содержание водорастворимых кислот и щелочей — ГОСТ 6307—75 зольность — ГОСТ 1461—75 содержание серы —ГОСТ 1431—64 содержание воды — ГОСТ 2477—65) не приводятся. [c.294]

    Физико-химические свойства нефтепродуктов и их чистота нормируются государственными стандартами в виде определенных показателей или физико-химических констант, таких как плотность, фракционный состав, октановое число, давление насыщенных паров, вязкость, температура вспышки и застывания, содержание воды, механических примесей и др. Так, например, качество нефти, поставляемой нефтеперерабатывающим заводом, регламентируется условиями ГОСТ 9965—76, согласно которому устанавливаются I, П и П1 группы нефти. Физико-химические показатели этих групп должны соответствовать нормам, указанным в табл. 23.. [c.151]

    Уплотняемая рабочая среда — нефтепродукты. Давление на всасывающей стороне насоса 1 МПа, предельно допустимая концентрация паров продукта в воздухе производственных помещений 1 мг/м температура рабочей среды 80 °С, вязкость при данной температуре 1 Ю" м / . В этом случае следует применять торцовое уплотнение типа ОП. [c.241]

    Фрост A. В., Вязкость паров нефтепродуктов. Изв. АН СССР, ОТН, №3—4, 21, 1942, стр. 152, 2-го выпуска справочника Физико-химические свойства индивидуальных углеводородов , ВНИТОН. Гостоптехиздат, 1947. [c.452]

    В справочниках для инженеров-проектировщиков (см., например, [1—4]) общего характера содержатся данные для вязкости только простейших углеводородов, па основании которых нельзя оценить сколько-пи-будь точно вязкости паров нефтепродуктов. Надо сказать, кроме того, что приводимые числа недостаточно согласуются с наиболее точными имеющимися в литературе данными. Особенно плохо согласуются с экспериментом величины, вычисляемые по графику Павлова и Симонова [3]. Данные, нриводимые в справочниках, предназиаченных для ипженеров-нефтяников [3,5], рассчитаны на бо.пее широкий круг веществ, но при сравнении с экспериментом оказываются совершенно не состоятельными. В то же время в литературе имеется огромное число непосредственных измерений вязкости углеводородных газов и паров, которые могли бы с успехом применяться для технологических расчетов. [c.433]

    Рио. 4. Номограмма для определония вязкости газов и паров нефтепродуктов. [c.437]

    На осиопании этих уравнений построена номограмма для расчета вязкостей паров парафинов и смесей углеводородов, близких к нефтепродуктам, от их молекулярного веса (рис. 4). [c.438]

    Построены приближейные эмпирические формулы и номограмма для расчета вязкостей паров чистых углеводородов и нефтепродуктов. [c.438]

    Паротеплоснабжение. Как уже указывалось, на установках АВТ применяют насыщенный водяной пар давлением от 3 до 30 кгс/см и перегретый пар при 250—400 °С давлением 6—12 кгс/см . Пар низкопотенциальный давлением до 3 кгс/см применяют в основном для подогрева нефтепродуктов до 70—90 °С с целью уменьшения их вязкости (для облегчения перекачки по трубопроводам) поддержания нужной температуры в емкостях, аппаратах поддержания температуры застывающих продуктов в лотках, каналах обогрева арматуры, фитингов и импульсных линий на установках,, обогрева отдельных производственных помещений и др. Перегретый пар применяют для технологических целей в атмосферных и вакуумных ректификационных колоннах в печах — для распыла топлива в пароэжекторных системах вакуумной аппаратуры для приводов насосов и паровых турбин. Однако в связи с распространением электрических приводов паровые агрегаты применяют редко и в малом количестве. Основным источником пароснабжения современных заводов являются собственные ТЭЦ, теплоэлектроцентрали районного или городского типа. Собственные котельные установки при заводе сооружаются редко. [c.201]

    Температурой вспышки называется та температура, нри которой нефтепродукт, нагреваемый в стандартных условиях, выделяет такое количество паров, которое образует с окружающим воздухом горючую смесь, вспыхивающую при поднесении к ней пламени. Температура вспышки нефтепродуктов тесно увязывается с их температурой кипения, т. е. с испаряемостью. Чем легче фракция нефти, тем ниже ее температура вспышки. Так, бензиновые фракции имеют отрицательные (до —40° С) температуры вспышки, керосиновые 28—60° С, масляные 130—325° С. Присутствие влаги, продуктов распада в нефтепродукте заметно влияет на величину его температуры вспышки. Этим пользуются в производственных условиях для суждения о чистоте получаемых при перегонке нефтяных фракций. Для масляных фракций температура вспышки показывает наличие легко испаряющихся углеводородов. Среди масляных фракций различного углеводородного состава наиболее высокая температура вспышки свойственна маслам из парафинистых малосмолистых нефтей. Масла той же вязкости из смолистых нафтено-ароматиче-ских нефтей характеризуются более низкой температурой вспьппки. [c.79]

    По сравнению с печными трубами подвески находятся в более тяжелых рабочих условиях, гак как они не охлаждаются потоками нефтепродуктов и иагренаются иногда до 1100°С. В топочных газах часто содержатся большие количества сернистого газа, водяных паров, оксида углерода, водорода и других агрессивных агентов, вызывающих коррозию металла подвесок. Так, ударная вязкость стали 20Х23Н13, из которой сделаны подвески, эксплуатировавшиеся в печах АВТ, в течение по-лугода снизилась более чем втрое. [c.75]

    Лекция 3. Основные физические свойства нефтей и нефтепродуктов С плотность, молексулярная масса, вязкость, давление насыщеннык паров, температуры вспышки, воспламенения, самовоспламенения, застывания, каплепадения и размягчения, тепловые свойства).  [c.352]

    Основными свойствами нефти являются относительная плотность молекулярная масса, вязкость (при иескольких температурах), температура застывания, температура вспыгакж, давление насыщенных паров кроме того, определяют содержание парафина, серы, азота, смол, асфальтепов, а также коксуемость, зольность, кислотное число для онределения содержания в нефти светд[ых нефтепродуктов устанавливают содержание фракций, выкипающих до 200 и до 350 С. [c.57]

    Как показали опыты [50], нефть и мазут способны вскипать только при определенном содержании в них влаги для нефти— выше 3,8% и мазута—выше 0j6%- Вскипание наступает через некоторый промежуток времени поЁЛе начала горения, когда нефтепродукт начнет прогреваться. В процессе прогрева нефтепродукта и уменьшения его вязкости влага, находящаяся в верхних слоях, частично опускается в нижележащие и постепенно накапливается на границе прогретых и холодных слоев, создавая слой с повышенным содержанием влаги. Когда температура обводненного слоя быстра повышается до 100° и выше, происходит превращение частиц воды в пар, пузырьки которого, двигаясь вверх, обволакиваются пленкой нефтепродукта и выходят на поверхность в виде пены. Ее образуется так много, что если нефтепродукт в резервуаре находился на верхнем уровне, то горящая пена переливается через борт резервуара, угрожая поджечь нефтепродукт в ближайших резервуарах. Опыты показали, что к вскипанию способны машинное масло и тяжелый бензин при наличии подстилающего слоя воды. Были случаи вскипания тяжелого бензина в процессе тушения его пеной. [c.206]

    Условия работы эжекто )ов на нефтебазах зависят от упру-Т ости паров и вязкости нефтепродуктов и резко отличаются от условий их применения в гидротехнике и сантехнике. Это нужно постоянно принимать в расчет при проектировании эжекторов для нужд нефтебаз. [c.11]

    По сравнению с печными трубами трубные подвески находятся в более тяжелых рабочих условиях, так как они не охлаждаются потоками нефтепродуктов и нагреваются иногда до 1100° С. В дымовых газах часто содержатся большие количества сернистого газа, водяных паров, окиси углерода, водорода и других агрессивных агентов, вызывающих коррозию. Длительная работа в таких условиях приводит к появлению тепловой хрупкости, даже у группы аустенитных сталей, отличающихся высокой коррозионной стойкостью, жаропрочностью и жаростойкостью. Так, при экспериментальных испытаниях на тепловую хрупкость стали Х23Н13 с выдержкой ее в печах атмосферно-вакуумной установки НПЗ в течение 4000 ч при температуре 700—750° С наблюдалось охрупчивание металла. Ударная вязкость при этом снизилась с 12,1—15,6 до 2,5—4,7 кГм1см  [c.16]

    Разработанные аппаратура и методика использованы для определения содержания серы в нефтях и нефтепродуктах (кроме моторного бензина). Навеску пробы 0,2—1,0 г разбавляют метилизобутилкетоном до объема 100 мл. При выборе степени разбавления исходят из необходимости иметь в готовом растворе концентрацию серы в пределах диапазона определяемых концентраций (40—400 мкг/мл). В то же время при меньшем разбавлении на результатах анализа сказывается вязкость пробы, ухудшается распыление и т. д. Эталоны готовят растворением дибензилдисульфида в МИБК. Установлена прямая зависимость между давлением паров соединения серы и чувстви-тельргастью определения серы. Так, для дибензилдисульфида, г/ ег-бутилдисульфида, грег-бутилсульфида и тиофена (давление паров при 25 °С соответственно незначительное 0,066 0,066 и 11 кПа) характеристическая концентрация составляет соответственно 2,7 2,7 2,0 и 0,6 мкг/г. По сравнению с результатами рентгенофлуоресцентного метода наблюдается небольшое систематическое отклонение, которое устраняется при работе по методу добавок. [c.251]

    Производительность насосов ПНП-12М 0,9—2,0 мЧмин, давление до 20 ати (при числе двойных ходов в минуту от 60 до 120). Вакуумметрическая высота всасывания составляет при перекачивании воды, 6 м, при перекачивании нефтепродуктов вязкостью до 825 сст 4,5 м. Максимальное давление пара перед входом в золотниковую коробку составляет 11 ати, противодавление отработавшего пара 2 ати. [c.98]

chem21.info

Динамическая вязкость газов и паров: таблицы при различной температуре

Динамическая вязкость газов и паров в интервале температуры от -220 до 1000°С

В таблице представлена динамическая вязкость газов и паров в зависимости от температуры (при отрицательной и положительной температуре).

Динамическая вязкость газов в таблице выражена в Па·сек с множителем 10-8. Например, коэффициент динамической вязкости азота N2 при нормальных условиях (при температуре 0°С и нормальном атмосферном давлении) равен 1665·10-8 или 0,00001665 Па·с.

Указана динамическая вязкость следующих газов и паров: азот N2, окись азота NO, закись азота N2O5, аммиак Nh4, аргон Ar, водород h3, водяной пар h3O, воздух, гелий He, кислород O2, криптон Kr, ксенон Xe, метан Ch5, неон Ne, сернистый газ SO2, углекислый газ CO2, окись углерода CO, этан C2H6, этилен C2h5.

По данным таблицы видно, что наиболее вязким газом при комнатной температуре является газ неон — вязкость неона равна 3113·10-8 Па·с.

Динамическая вязкость газов и паров в диапазоне температуры от 0 до 700°С

В таблице приведены значения коэффициента динамической вязкости газов и паров при положительной температуре в диапазоне от 0 до 700°С.

Вязкость в таблице выражена в Па·сек с множителем 10-8. Например, коэффициент динамической вязкости ацетилена C2h3 при нормальных условиях равен 955·10-8 или 0,00000955 Па·с.

Даны значения динамической вязкости следующих газов и паров: ацетон (диметилкетон, пропанон) C3H6O, бензол C6H6, бром Br2, бромная ртуть (бромид ртути III) HgBr3, n-бутан C4h20, бутан C4h20, бутилен (1-бутен) C4H8, 2-бутен C4H8, водород бромистый (бромоводород) HBr, водород йодистый (иодоводород) HI, водород хлористый (газообразная соляная кислота, хлороводород) HCl, водород фтористый (фтороводород, гидрофторид, фторид водорода) HF, n-гексан (гексан) C6h24, n-гептан C7h26, диметиловый эфир (метиловый эфир, метоксиметан, древесный эфир) C2H6O, диэтиловый эфир (этиловый эфир, серный эфир) C4h20O, дифенилметан С13Н12, дифениловый эфир C12h20O, изоаметилен (3-метил-1-бутен) C5h20, изобутан (метилпропан, 2-метилпропан) С4Н10, изобутилацетат (изобутиловый эфир уксусной кислоты) С6Н12О2, изобутилформиат C5h20O2, изопентан C5h22, изопропиловый спирт (пропанол-2, 2-пропанол), изопропанол, диметилкарбинол) С3Н7ОН, иод (йод) I2, йодистая ртуть HgI3, метилацетат (метиловый эфир уксусной кислоты) С3Н6О2, метилацетилен (пропин) C3h5, 3-метилен-1-бутен C5h20, метилбромид (бромистый метил, монобромметил, монобромэтан, метилбромид, бромметил) Ch4Br, мезитилен C9h22, метиленхлорид (хлористый метилен, дихлорметан, ДХМ) Ch3Cl2, метилизобутират C2h20O2, метиловый спирт (метанол, древесный спирт, карбинол, метилгидрат, гидроксид метила) Ch4OH, метилтиофен, мышьяковистый водород (гидрид мышьяка, арсин) Ash4, метилхлорид (хлорметан) Ch4Cl, нитрозил хлорид (хлористый нитрозил, оксид хлорид азота) NOCl, нонан C9h30, октан C8h28, окись углерода CO, н-пентан C5h22, амилен, пиридин C5H5N, пропан C3H8, пропилацетат (н-пропиловый эфир уксусной кислоты) C5h20O2, пропилен C3H6, пропиловый спирт (пропан-1-ол, 1-пропанол) C3H7OH, ртуть Hg, сероводород h3S, сероуглерод CS2, силан (кремневодород, гидрид кремния) Sih5, толуол (метилбензол) C7H8, тиазол C3h4NS, тиофен C4h5S, триметилбутан C7h26, триметилэтилен С5Н10, четырехбромистое олово (бромид олова IV) SnBr4, четыреххлористое олово (хлорид олова IV) SnCl4, четыреххлористый углерод (тетрахлорметан, ЧХУ) CCl4, циклогексан C6h22, циклопропан C3H6, цинк Zn, уксусная кислота (этановая кислота) C2h5O2, хлор Cl2, хлороформ (трихлорметан, метилтрихлорид, хладон-20) CHCl3, этилацетат (этиловый эфир уксусной кислоты) C4H8O2, этиловый спирт (этанол, метилкарбинол, винный спирт или алкоголь C2H6O) C2H5OH, этилпропионат C5h20O2, этилхлорид (хлористый этил, монохлорэтан) C2H5Cl.

Динамическая вязкость газов при температуре от -213 до 1927°С

В таблице представлены значения коэффициента динамической вязкости газов в зависимости от температуры при атмосферном давлении. Вязкость газов указана при отрицательных от 60К (-213°С) и положительных температурах до 2200К (1927°С).

Вязкость в таблице выражена в Па·сек с множителем 10-6. Например, коэффициент динамической вязкости газа аргона при температуре 27°С (300 К) равен 22,7·10-6 или 0,0000227 Па·с.

В таблице указан коэффициент динамической вязкости следующих газов: гелий He, неон Ne, аргон Ar, криптон Kr, ксенон Xe, водород h3, дейтерий D2, азот N2, кислород O2, фтор F2, хлор Cl2, окись углерода CO, углекислый газ CO2, сероводород h3S, углерода оксид-сульфид (сероокись, карбонилсульфид) COS, синильная (циинистоводородная) кислота (цианистый водород) HCN, дициан C2N2, силан (кремневодород, гидрид кремния) Sih5, воздух, фосфин Ph4, четыреххлористый углерод (тетрахлорметан, ЧХУ) CCl4, бром Br2, иод I2, аммиак Nh4, водород хлористый (газообразная соляная кислота, хлороводород) HCl, водород йодистый (йодоводород) HI, окись азота NO, оксид азота NO2, оксид азота N2O, сернистый газ SO2, водяной пар h3O.

Следует отметить, что с ростом температуры значение динамической вязкости газов увеличивается.

Источники:

  1. Таблицы физических величин. Справочник. Под ред. акад. И.К. Кикоина. М.: Атомиздат, 1976. — 1008 с.
  2. Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.:Энергоатомиздат, 1991. — 1232 с.

thermalinfo.ru

Вязкость газов и нефтяных паров

    Вязкость углеводородных газов и нефтяных паров подчиняется иным, чем для жидкостей, закономерностям. Так, температурная зависимость вязкости газов и паров обратна, т. е. с повышением температуры вязкость газов растет. Эта закономерность удовлетворительно описывается формулой Сазерленда (3.53) или Фроста (3.54)  [c.131]

    ВЯЗКОСТЬ ГАЗОВ И НЕФТЯНЫХ ПАРОВ [c.130]

    Вязкость углеводородных газов и нефтяных паров подчиняется иным, чем для жидкостей, закономерностям. С повышением температуры вязкость газов возрастает. Эта закономерность удовлетворительно описывается формулой Сазерленда (3.61) или Фроста (3.62)  [c.130]

    Цены на нефтяные фракции, применяемые для производства синтез-газа в различных капиталистических странах, устанавливаются на основе таких общеизвестных и легко измеряемых свойств, как плотность, вязкость и содержание серы. Однако-для химического использования непосредственный интерес представляет элементарный состав нефтяной фракции или ее теплосодержание (энтальпия) при температуре сырьевого потока. Если эти параметры известны, то легко можно вычислить проектный расход кислорода, топлива и водяного пара на производство синтез-газа- Одной из задач данного доклада и является изложение общего метода расчетного определения эксплуатационных показателей установок производства синтез-газа непосредственно на основании таких свойств нефтяного сырья, как плотность, вязкость и содержание серы. Этот метод может также использоваться для построения эксплуатационных кривых, характеризующих поведение любого нефтяного сырья в реакторе частичного окисления, как функцию независимых параметров процесса отношения кислород топливо, отношения водяной пар топливо, температура предварительного подогрева, чистота кислорода и производительность. [c.185]

    Варка мыла прямым методом с карбонатным омылением. Для этого в котел подают примерно /4 часть рассчитанного количества углекислой соды в виде концентрированного раствора (28— 30%-ный) или смеси раствора и сухой соды. Раствор соды подогревают острым паром до кипения и в него вводят жировую смесь пропуская ее через змеевик. Благодаря этому жировая смесь раздробляется на мелкие капли, что интенсифицирует реакцию и предупреждает образование кислых мыл. Рекомендуется вначале загружать смесь нефтяных кислот с канифолью, так как образующееся при этом мыло обладает малой вязкостью, что облегчает удаление из него углекислого газа. [c.93]

    В схемах глубокой переработки нефти предусматривается использование тяжелых нефтяных остатков - гудронов и асфальтитов для получения Н2 и синтез-газа путем их газификации. Процесс газификации основан на неполном окислении углеводородного сырья кислородом, воздухом, обогащенным кислородом, в присутствии водяного пара или одним воздухом. Факельная газификация осуществляется в пустотелом реакторе. Основными продуктами являются окись углерода и водород, наряду с которыми образуются небольшие количества двуокиси углерода, иетана, сероводорода, выделяется также дисперсный углерод - сажа (от 0,1 мас.% для метана до 2-4 мас.%-тяжелых нефтяных остатков). Переработка тяжелых нефтяных остатков с температурой н.к. выше 500°С встречает затруднения, связанные с их высокой вязкостью, зольностью, температурой размягчения, коксуемостью, большим содержанием серы и металлов. [c.120]

    Процессам термического крекинга, протекающим в жидкой фазе, соответствует тяжелое сырье — нефтяные остатки, тяжелые дистилляты. Если предусмотрено неглубокое разложение сырья (например, для снижения вязкости остатка в процессе висбрекинга), конечный продукт содержит небольшое количество легких фракций (газ, бензин), которые находятся в паровой фазе. Основная масса продукта, как и исходное сырье, остается в жидкости. В процессе висбрекинга роль давления невелика — повышенное давление лишь немного увеличивает пропускную способность установки. В процессе коксования роль давления больше (особенно при переработке дистиллятного сырья), поскольку реакции уплотнения будут протекать не только в жидкой фазе, но и за счет конденсации паров высокоароматизированных продуктов разложения. [c.169]

    Процессам термического крекинга, протекающим в жидкой фазе, соответствует тяжелое сырье - нефтяные остатки, тяжелые дистилляты. Если предусмотрено неглубокое разложение сырья (например, для снижения вязкости остатка в процессе висбрекинга), конечный продукт содержит небольшое количество легких фракций (газ, бензин), которые находятся в газовой фазе. Основная масса продукта, как и исходное сырье, остается в жидкости. При наличии глубокого превращения, как это происходит в процессе коксования, крекинг протекает в камере или на поверхности теплоносителя с образованием твердого остатка и паров продуктов разложения. В процессе висбрекинга роль давления невелика - повышенное давление лишь немного увеличивает производительность установки. При коксовании роль давления больше (особенно при переработке дистиллятного сырья), поскольку реакции уплотнения будут протекать не только в жидкой фазе, но и за счет конденсации паров высокоароматизированных продуктов разложения. [c.39]

    По мере коксования в кубах тяжелых нефтяных остатков возрастают их вязкость, количество не растворимых в бензоле (ди-снерсоидов) и количество асфальтенов, которые являются типичными коллоидами. Одновременно с этим из остатка выделяются дистиллятные пары и все возрастающее количество газов, которые вспенивают (вспучивают) высоковязкий остаток. Уже после отгона от коксуемого сырья 25—30% дистиллята остаток имеет консистенцию битума с температурой размягчения по КиШ около 30—40°. После отгона 45—50% дистиллята температура размягчения остатка повышается до 60—70° и т. д. [c.109]

    Продувкой нефтяные остатки можно превращать в асфальт с высокой температурой плавления и вязкостью и хорошей тягучестью. В одном из процессов шздух, водяной пар или тот и другой вм-есте вводятся под высоким давлением в перегонный куб через ряд трубок, доходящих до дна. Трубки устроены таким образом, что в кубе получается двойное циркуляционное движение остатка. 0браз1ующиеоя легколетучие продукты уводятся через крышку. Сконденсировавшиеся пары мО Гут быть возвращены в масло, подвергающееся окислению Остатки от крекированных погонов окисляются продувкой воздуха или водяного пара под уменьшенным давлением при 300° "i. Bauer и Urmann сообщают, что если горячие п-родукты обработать тотчас же после окисления перегретым водяным паром или индиферентным газом, то качество продуктов улучшается. [c.910]

    По сравнению с дизельным топливом сжиженный нефтяной газ имеет меньшую кинематическую вязкость (рис. 6.14), что приводит к увеличению утечек топлива в ТНВД и форсунках и ухудшению условий работы прецизионных пар топливоподающей аппаратуры [6.22]. Для предотвращения повышенного износа плуггжерных пар, нагнетательных клапанов и распылителей форсунок, обусловленного меньшей вязкостью сжиженного газа (равной примерно = 0,3 ммV , т.е. в 10—20 раз меньшей кинематической вязкости дизельного топлива) в сжиженный нефтяной газ вводят 5—10 % дизельного топлива или моторного масла. Масло и дизельное топливо хорошо растворяются в сжиженном нефтяном газе, образуя устойчивые смеси с более высокой вязкостью. Это не только улучшает смазывающие свойства топлива, но и повышает его воспламеняемость в КС дизеля. [c.277]

    Практически возможно создание газовых двигателей с впрыскиванием сжиженного нефтяного газа в жидкой фазе непосредственно в цилиндры двигателя и воспламенением газовоздушной смеси от сжатия [6.21, 6.60, 6.68]. По сравнению с дизельным топливом сжиженный газ имеет меньшие плотность и вязкость, большие сжимаемость и давление насыщенньгх иаров, что вызывает необходимость внесения конструктивных изменений в топливную систему базового дизеля. В представленной на рис. 6.19 схеме системы топливоподачи для впрыскивания сжиженного газа в КС дизеля для предотвращения повышенного износа плунжерных пар, нагнетательных клапанов и распьшителей, обусловленного меньшей вязкостью сжиженного газа, в него через форсунку 7 вводят 5—10% дизельного топлива или моторного масла, подаваемых к ней односекционным топливным (масляным) насосом 8 [6.21]. Смешивание сжиженного нефтяного газа с дизельным топливом (маслом) происходит в смесителе 6 линии низкого давления. Сжиженный нефтяной газ, просачивающийся через зазоры плунжерных пар, испаряется, поэтому предусмотрен отвод паров с помощью отсасывающего устройства во впускной трубопровод 5 двигателя или в топливный бак. [c.285]

    Остаток из камеры испарения переводят в другую камеру диаметром 1,8 лг. и высотой 9 ж, где давление понижается до 1,4 ат. Образующиеся здесь пары также поступают в ректификационную колонну. Новый остаток смешивают с соответствующим количеством промежуточной фракции из ректификационной колонны, чтобы довести его вязкость до вязкости котельного топлива, и используют в качестве последнего. В особых случаях термический крекинг проводят так, чтобы конечными продуктами были только бензин и газ при этом в остатке образуется нефтяной кокс. Ниже приводятся данные по работе установки парожидкофазного крекинга (табл. 164), [c.242]

chem21.info