Способ выделения сероорганических соединений из нефти и нефтепродуктов. Выделение металлов из нефти


Способ выделения концентрата ценных металлов из тяжелого нефтяного сырья

Настоящее изобретение относится к области переработки тяжелых нефтяных остатков, таких как остатки атмосферно-вакуумной перегонки нефти и остаточные высококипящие фракции термо- и термогидродеструктивных процессов. Изобретение включает в себя: экстракционную обработку тяжелого нефтяного сырья с выделением насыщенных и ароматических углеводородов, являющихся высококачественным сырьем для дальнейшей переработки, и смолисто-асфальтенового остатка, содержащего редкие и редкоземельные металлы; сжигание тяжелого остатка экстракции с получением золошлаковых остатков, представляющих собой концентрат ценных металлов, в том числе редких и редкоземельных металлов, а также выработкой тепла и/или электроэнергии.

Одной из важных задач, возникающих при освоении как традиционных, так и нетрадиционных источников углеводородного сырья является повышение рентабельности их переработки. Применительно к тяжелому нефтяному сырью, содержащему значительные количества гетероорганических соединений, металлов и коксового остатка, одним из существенных факторов повышения рентабельности освоения является комплексный подход к его глубокой переработке, позволяющий использовать не только его углеводородный потенциал посредством выработки компонентов моторных топлив и других продуктов с высокой добавленной стоимостью, но и потенциал попутных неорганических компонентов в его составе, таких как редкие и редкоземельные металлы, концентрат которых может служить ценным дополнительным сырьем для металлургической промышленности.

В процессах нефтепереработки основное количество содержащихся в нефти соединений металлов переходят в мазут или в более тяжелые остатки (гудрон, битум), концентрируясь в смолисто - асфальтеновой их части. В гудроне содержания металлов по сравнению с содержанием в нефтях увеличиваются не менее чем 3,5-4 раза, а в остаточной фракции (остаток >520°С) гидроконверсии гудрона с суспендированным катализатором при степени конверсии сырья 80-90% - не менее чем 8-9 раз по отношению к гудрону. Следовательно, гудрон и остаточная фракция его суспензионной гидроконверсии является ценным сырьем для выделения концентрата ценных металлов.

Значительная часть соединений металлов, присутствующих в тяжелом нефтяном сырье, связана с асфальтенами. Для их удаления широкое распространение получил метод деасфальтизации растворителями. Как в отечественной, так и в зарубежной практике накоплен большой опыт физико-химической обработки нефтяного сырья методом экстракции с применением различных органических растворителей. В большинстве промышленных установок в качестве растворителя используют сжиженный пропан. В последнее время в качестве селективных растворителей для эффективного выделения смолисто-асфальтеновых веществ, в которых сосредоточены металлы, из нефтяных остатков предлагается использовать нормальные алканы до С8, петролейный эфир, бензины и другие легкие углеводородные фракции.

В БашНИИ НП разработан процесс деасфальтизации тяжелых нефтяных остатков (процесс «Добен»), где в качестве растворителя используется бензин (А.С. Эйгенсон, Ю.С. Сабадаш, Б.М. Ежов, Ф.Х. Маликов и др. Деасфальтизация тяжелых остатков нефти бензином (процесс ДОБЕН). в кн.: Производство моторных и котельных топлив из тяжелых остатков высокосернистых нефтей: БашНИИ НП, вып. Х, 1972 г., С. 17-36 В ходе процесса «Добен» за счет удаления асфальтенов улучшается качество остаточного продукта: в 1,5 раза снижается коксуемость, в 4-6 раз - зольность, в 2-3 раза - содержание тяжелых металлов. Однако, содержание общей серы и азота снижается лишь на 5-20%. Высокое содержание в составе бензина ароматических углеводородов и высокомолекулярных алканов снижает осаждение асфальтенов из нефтяных остатков.

В отличие от традиционных процессов деасфальтизации растворителями в процессах ROSE (Residuum Oil Supercritical Extraction) и DEMEX (Demetallization Process) отделение растворителя от деасфальтизата осуществляется при сверхкритической температуре растворителя, что позволяет значительно уменьшить энергоемкость процесса (Buckley J., Hirasaki G., Liu Y. // Petrol Science And Technology. - 1998. - 16, №3-4. P. 251-285). В процессе ROSE деасфальтизат экстрагируется из сырья (вакуумные остатки) легким растворителем, таким как н-бутан или н-пентан. Затраты на энергоноситель (пар, электроэнергия, топливо) и охлаждающую воду в процессах ROSE и DEMEX обычно составляет 40-70% от соответствующих затрат в обычных процессах деасфальтизации. Такая экономия обусловлена главным образом тем, что свыше 90% экстрагента извлекается в виде сверхкритического флюида. Затем растворитель конденсируют, компримируют и используют вновь (Козин В.Г., Солодова Н.Л., Башкирцева Н.Ю. Современные технологии производства компонентов моторных топлив. Казань: Татарское республиканское издательство, 2002. - 264 с.). Процесс DEMEX предназначен для получения деасфальтизатов с низкой коксуемостью и пониженным содержанием металлов. В процессе DEMEX в качестве растворителя используется н-пентан. Процесс осуществляется при давлении 3,3 МПа и температуре около 200°С.

Рассмотренные способы являются достаточно дорогостоящими и сложными, требующими очень больших количеств растворителя по отношению к исходному углеводородному сырью, их эффективность, качество и выход продуктов не являются полностью удовлетворительными, они дают большие количества асфальтеновых потоков и не пригодны для отделения металлов, к примеру, находящихся в форме свободных порфириновых комплексов ванадия и никеля и других металлсодержащих соединений непорфириновой структуры, не связанных с асфальтеновой фракцией. Для устранения этих недостатков уже были предложены способы, основанные на применении неуглеводородных растворителей, в частности, диоксида углерода.

Известен способ, описанный в патенте США №4191639, в котором предлагается использовать диоксид углерода в качестве одного из компонентов многокомпонентного жидкого растворителя для деметаллизации и деасфальтизации тяжелых нефтяных остатков. При этом тяжелое нефтяное сырье после выделения асфальтенов и металлов может использоваться как сырье процесса каталитического крекинг флюид. Используемый растворитель представляет собой бинарную или тройную смесь, составленную из следующих компонентов: сульфид водорода, диоксид углерода и легкий углеводород, выбранный из группы н-алканов С3-С5. Согласно данному изобретению использование многокомпонентного растворителя обеспечивает увеличение селективности процесса выделения деасфальтизата относительно содержания металлов, гетероатомов и коксового остатка по сравнению с использованием каждого из растворителей в отдельности. Сущность процесса заключается в контакте растворителя с асфальтенсодержащим нефтяным сырьем в отсутствии водорода в объемном соотношении от 1:1 до 20:1 Для проведения процесса может использоваться периодический смеситель или противоточная экстракционная колонная или контактор, которые наиболее часто используются в случае пропановой деасфальтизации. Температура процесса должна быть ниже критической для всех компонентов растворителя, а давление достаточным для поддержания всех компонентов растворителя в жидком состоянии.

Недостатком данного способа является использование нескольких растворителей, основным из которых, как правило, должен быть пропан, что усложняет и удорожает проведение процесса. Помимо этого, из-за различия в сверхкритических параметрах для каждого из компонентов растворителя процесс проводится в субкритических для растворителя условиях, что не позволяет добиться высоких скоростей массопереноса, характерных для сверхкритических флюидов.

Наиболее перспективным направлением в области процессов деасфальтизации может стать использование сверхкритических флюидов непосредственно на стадии экстракции более легких углеводородных компонентов нефтяного сырья, свободных от соединений металлов. Как известно, в сверхкритических условиях растворители обладают особыми свойствами, отличающими их от газов и жидкостей. Сверхкритические флюиды (СКФ) имеют плотности, близкие к плотности жидкости, но вязкость близкую к вязкости газов, в результате чего коэффициенты диффузии в СКФ значительно выше коэффициентов диффузии в жидкостях, что позволяет существенно увеличить скорость массопереноса. Растворяющая способность СКФ практически экспоненциально зависит от плотности, и небольшие изменения давления могут в значительной степени изменять растворимость компонентов в СКФ. Это дает возможность тонко регулировать растворяющую способность, избирательность и легко отделять и разделять извлекаемые компоненты. Среди СКФ наиболее привлекательным является диоксид углерода (СК-СО2), который является негорючим, нетоксичным, недорогим и относительно доступным. Помимо этого, диоксид углерода характеризуется достаточно невысокими значениями параметров критической точки (Т=31.1°С, Р=7.38 МПа), что с точки зрения затрат делает потенциально привлекательным реализацию процессов с его участием. Вследствие высокой летучести растворитель может легко регенерироваться из раствора экстракта простым сбросом давления (R.N. Cavalcanti, M.A.A. Meireles, Fundamentals of supercritical fluid extraction, Comprehensive sampling and sample preparation, 2012, v. 2, pp. 117-133).

При этом диоксид углерода может использоваться как растворитель более легкокипящих, преимущественно, алифатических углеводородов в составе нефтяного сырья, так и как антирастворитель, способствующий дестабилизации нефтяной дисперсионной системы и осаждению тяжелых нерастворимых смолисто-асфальтеновых и парафиновых компонентов в виде отдельной фазы (Liu Z.M. et al., Phase equilibria of the СО2-Jiangsu crude oil system and precipitation of heavy components induced by supercritical CO2, Journal of Supercritical Fluids, 1999, v. 16, pp.27-31).

В работах (см., например, Samedova F.I. et al, (2015) Summary of the Monograph of F.I. Samedova "The Application of Supercritical Fluids in Petroleum and Oil Fractions Refining", Voice of the Publisher, v. 1, pp. 17-25. URL: http://dx.doi.org/10.4236/vp.2015.11003. или Самедова Ф.И. и др. Очистка нефтей и тяжелых остатков от асфальтенов и металлов сверхкритической флюидной экстракцией с использованием диоксида углерода, Сверхкритические флюиды. Теория и практика, 2008, т. 3. №2, с. 52-56) предлагается метод деасфальтизации нефти и нефтепродуктов с использованием сверхкритического диоксида углерода в качестве растворителя как альтернатива существующим стандартным методам определения содержания асфальтенов в составе нефтяного сырья по IP 143 и ГОСТ 11851-85 и промышленным процессам деасфальтизации тяжелых нефтяных остатков, использующих большие объемы легких углеводородных растворителей. Согласно предложенному методу перед проведением процесса исходный гудрон разбавляется н-гептаном в соотношении 1:0.7-1.3 после чего загружается в экстрактор. Экстракция проводится при температуре 40-80°С, давлении 73-80 атм и массовом соотношении гудрон: диоксид углерода равном 1:1 при непрерывной циркуляции диоксида углерода в системе в течение 4 часов, после чего требуется еще 4 часа для осаждения асфальтенов из исходного раствора. При этом несмотря на высокие выход деасфальтизата на уровне 95-96% мас. и степень концентрирования металлов исходного сырья в остатке процесса, эффективность деметаллизации остается на достаточно низком уровне. К примеру, степень выделения ванадия и никеля из исходного гудрона в состав асфальтита находится на уровне 16 и 34%, соответственно.

В статье Lodi L. et al., An Experimental Study of a Pilot Plant Deasphalting Process in CO2 Supercritical, Petroleum Science and Technology, 2015, v. 33, pp. 481-486, описан способ деасфальтизации атмосферного и вакуумного нефтяных остатков при использовании диоксида углерода в сверхкритических условиях в качестве растворителя. Процесс проводили с использованием экстракционного сосуда объемом 3 литра в статическом режиме при температуре 110-135°С, давлении 250-300 бар и времени экстракции 60 минут. В результате процесса достигались высокие степени деметаллизации образующегося деасфальтизата, содержание никеля и ванадия в составе которого составляло меньше 1 ppm при их концентрации в составе исходного сырья на уровне 50 ppm для каждого из металлов. Однако выход деасфальтизата находился на очень низком уровне порядка 1% об., что авторы связывают с низкой селективностью СК-СО2 по отношению к высокомолекулярным компонентам сырья. Низкая растворимость компонентов нефти в СК-СО2 в равновесных условиях также отмечается в работе (Liu Z.M. et al., Phase equilibria of the CO2-Jiangsu crude oil system and precipitation of heavy components induced by supercritical CO2, Journal of Supercritical Fluids, 1999, v. 16, pp. 27-31).

Так как выход деасфальтизата был низким, общая степень деметаллизации тяжелого нефтяного сырья также оказывалась недостаточной, и значительная доля металлов не была удалена.

Для получения концентрата ценных металлов предложены методы, основанные на сжигание металлосодержащего углеводородного сырья.

Так, в патенте РФ 2278175 (опуб. 20.06.2006) получают шихту, содержащей твердый горючий компонент и проницаемой для газообразного окислителя, проводят нагрев шихты до температуры окисления, подачу газообразного окислителя, проведение процесса горения, возгонку легколетучих металлсодержащих компонентов, последующую конденсацию возгона и извлечение целевого продукта, согласно изобретению долю твердого горючего компонента в шихте поддерживают в пределах от 3 до 15% мас., процесс проводят в режиме фильтрационного горения путем продувки газообразного окислителя через слой шихты, прошедшей высокотемпературную обработку, и выведения из реактора газообразных продуктов горения через слой загруженной в реактор свежей шихты.

В патенте США. №5277795 раскрывает сжигание нефтяного кокса в шлакообразующую циклонной камере при температуре до 2550°F (1398,89°С), сбор расплавленной золы и извлечения соединений металлов из золы. Этот процесс обремененные проблемами зашлакованности работы и связанного с огнеупорной и металлической коррозии V2O5, содержащего шлаки.

Известен способ извлечения металлов из углеродистых остатков нефтепереработки, описанный в патенте США №4276266. Предложенный способ заключается в сжигании углеводородсодержащего тяжелого остатка нефтепереработки при температурах от 800°С до 1050°С. Сжигание проводят в псевдоожиженном слое в смеси известка (25-75%) и кремнезема (25-75%) для селективного извлечения частиц ванадия или никеля, далее проводят водное выщелачивание экстрагированного металла.

Недостатком способа является использование дополнительных добавок, что вызывает дополнительные капиталовложения, а также отсутствия возможности получения концентрата редкоземельных металлов.

Главным недостатком известных методов получения концентрата ценных металлов является то, что при их использовании теряется ценное органическое сырье для производства моторных топлив и химических продуктов. Кроме того, известные методы не позволяют эффективно извлекать редкоземельные металлы из углеводородного тяжелого сырья.

Наиболее близким аналогом (прототипом) является способ получения концентрата ценных металлов (ванадия, никеля, молибдена) из тяжелого нефтяного сырья при гидроконверсии тяжелых фракций нефти, описанный в патенте РФ №2556997. Способ включает сжигание при 1000-1300°С или газификацию высококипящей фракции тяжелого нефтяного сырья, окислительный обжиг уловленных золошлаковых остатков и выщелачивание золошлаковых остатков водным раствором 10% Nh4 и 5% (Nh5)2СО3) с последующей фильтрацией, промыванием водой и получением концентрата ванадия и никеля с примесью молибдена. Раствор смешивают с раствором парамолибдата аммония и, если требуется, аммиаката никеля с получением катализатора.

Недостаток прототипа состоит в том, что в нем также теряется органическое масляное сырье, входящее в состав высококипящей фракции, а часть молибдена и никеля, напротив, остается в растворе - выщелачивание известным способом не позволяет достичь их максимального концентрирования в осадке. Часть соединений ценных металлов могут теряться и со сточными водами, образовавшимися после вымывания из золошлакового остатка выщелачивающего раствора, и загрязнять окружающую среду. Из-за недостаточной степени концентрирования иных металлов, кроме ванадия, полученный концентрат не содержит ценных редкоземельных элементов.

Задача настоящего изобретения заключается в разработке способа выделения металлов из тяжелого нефтяного сырья, позволяющего в максимальной степени сконцентрировать ценные металлы в получаемом золошлаковом остатке сжигания, извлекать редкоземельные металлы и одновременно извлекать масляные компоненты с минимальным содержанием металлов.

Известные из уровня техники способы - как включающие применение растворителя, в том числе сверхкритического, так и включающие сжигание и последующую обработку золошлакового остатка - не позволяют достаточно эффективно этого достичь.

Техническим результатом настоящего изобретения является извлечение масляных компонентов с минимальным содержанием металлов с одновременным получением концентрата ценных металлов, в том числе редких и редкоземельных, с максимальным их извлечением от потенциального содержания в исходном сырье.

Указанный технический результат достигается за счет следующей совокупности признаков изобретения.

В способе выделения концентрата ценных металлов из тяжелого нефтяного сырья, включающем сжигание тяжелого нефтяного остатка с получением золошлакового остатка, из которого получают концентрат ценных металлов, в качестве тяжелого нефтяного остатка используют смолисто-асфальтеновый остаток, который предварительно выделяют из тяжелого нефтяного сырья путем экстракции растворителем сверхкритическим диоксидом углерода с добавлением от 10 до 30% мас. от массы растворителя жидкого органического модификатора, выбираемого из ряда: метанол, этанол, ацетон, ацетонитрил, этилацетат, н-гептан, толуол, о-ксилол, при температуре от 40 до 70°С и давлении от 150 до 400 бар, выбираемых таким образом, чтобы плотность диоксида углерода была не ниже 0.8 г/мл, указанное сжигание после отгонки растворителя осуществляют при температуре от 900 до 1300°С с коэффициентом избытка воздуха от 1.1 до 1.3, а золошлаковый остаток выводят как концентрат ценных металлов, включающих редкие и редкоземельные металлы.

В качестве тяжелого нефтяного сырья предпочтительно используют гудрон или остаточные фракции гидроконверсии гудрона в процессе с суспендированным катализатором, имеющие температуру кипения 420°С и выше.

В качестве жидкого органического модификатора диоксида углерода предпочтительно используют толуол при его содержании 25% мае. от массы растворителя.

На первой стадии исходное тяжелое нефтяное сырья подвергают экстракции для выделения более легких, преимущественно, масляных компонентов с низким содержанием металлов и получения смолисто-асфальтенового остатка, концентрирующего основное количество ценных металлов в своем составе. При экстракции растворителем происходит деасфальтизация и деметаллизация тяжелого нефтяного сырья.

Растворителем для проведения процесса является диоксид углерода в сверхкритическом состоянии в смеси с жидким органическим модификатором, позволяющим увеличить селективность и растворяющую способность основного растворителя по отношению к предельным и ароматическим углеводородам в составе сырья. Экстракцию проводят при температурах от 40 до 70°С и давлениях от 150 до 400 бар. При этом давление и температура в данных диапазонах выбирают таким образом, чтобы плотность диоксида углерода была не ниже 0.8 г/мл, обеспечивая его высокую растворяющую способность и смешиваемость с органическим растворителем, выполняющим роль модификатора. Увеличение температуры благоприятно влияет на растворимости компонентов тяжелого нефтяного сырья в растворителе и скорости экстракции за счет увеличения давления паров, снижения вязкости и увеличения коэффициентов диффузии. Однако при прочих равных условиях с ростом температуры быстро снижается плотность и растворяющая способность СК-СО2, что должно компенсироваться увеличением давления процесса.

В качестве модификаторов могут использовать низшие спирты, эфиры, нитрилы, предельные и ароматические углеводороды с числом атомов углерода не более 8 - метанол, этанол, ацетон, ацетонитрил, этилацетат, н-гептан, толуол, о-ксилол. Концентрация модификатора может варьироваться в диапазоне от 10 до 30% мас. от массы растворителя (суммарной массы диоксида углерода и модификатора) в зависимости от группового состава исходного нефтяного сырья.

При этом наиболее предпочтительным модификатором является толуол, обладающий, с одной стороны, высокой растворяющей способностью к ароматическим углеводородам, составляющим, как правило, значительную часть тяжелого нефтяного сырья, а, с другой стороны, низкой селективностью по отношению к полярным гетероорганическим металлсодержащим соединениям, что позволяет добиться высокой степени деметаллизации и концентрирования металлов в остатке процесса. Наиболее эффективно использование растворителя, содержащего 25% мас. толуола.

В качестве тяжелого нефтяного сырья могут использовать тяжелые нефтяные остатки перегонки нефти, тяжелые неконвертированные остатки термо- и термогидрокаталитических деструктивных процессов и др. Наиболее предпочтительным сырьем являются остатки вакуумной перегонки нефти (гудроны) и остатки от гидроконверсии гудронов в процессе с суспендированным катализатором, имеющие температуру кипения 420°С и выше.

Процесс могут проводить в экстракторе полупериодического действия с периодической загрузкой сырья и выгрузкой остатка и непрерывной подачей растворителя и отводом образующегося экстракта. Однако наиболее предпочтительным является проведение процесса с использованием противоточной тарельчатой или насадочной экстракционной колонны или роторно-дискового экстрактора, обеспечивающие разделение легкой и тяжелой фазы за счет градиента плотности и действия центробежных сил, соответственно. В данном случае тяжелое нефтяное сырья подается в верхнюю часть колонны (экстрактора), а растворитель в нижнюю часть. Образующаяся фаза экстракта в растворителе непрерывно отводится с верха экстрактора, а тяжелый остаток процесса - с низа экстрактора, соответственно. При этом количество ступеней, время пребывания сырья в экстракторе (линейная скорость в колонне) и соотношение растворитель/сырье будут зависеть от состава и свойств исходного сырья и растворителя, скорости массообменного процесса и необходимых выходов и состава продуктов.

Диоксид углерода могут отделять от раствора экстракта простым сбросом давления в отдельном сепараторе и при необходимости использовать заново, в то время как для выделения органического модификатора нужно использовать испаритель и/или отпарную колонну. После разделения органический модификатор конденсируют, охлаждают и подают отдельным насосом на смешение с диоксидом углерода, выполняющим роль основного растворителя.

Остаток экстрагирования, содержащий асфальтены, смолы, соединения металлов и другие тяжелые гетероструктуры, со сжатым воздухом через форсунки вдувают в топочное пространство котлоагрегата с температурой от 900 до 1300°С, а через другие форсунки в топочное пространство нагнетают дополнительное количество воздуха до его суммарного количества, обеспечивающего величину избытка воздуха, равную 1.1-1.3.

Тепло дымовых газов используют в пароперегревателе, где производят перегретый водяной пар. Пар можно использовать для производства электроэнергии и нагрева аппаратов на стадии экстракции.

Газообразные продукты, содержащие твердые частицы золы и шлака (ЗШ), образовавшиеся из минеральных веществ остатка экстракции, и частиц сажи и коксоподобного углерода (недожог), образовавшиеся в результате неполного сгорания органических веществ, после охлаждения в пароперегревателе до 200°С направляют в аппараты сухого золоулавливания, например, рукавный фильтр с степенью улавливания не менее 98%. Уловленный в рукавном фильтре золошлаковый остаток с содержанием недожога от 10 до 17.5% является концентратом ценных, в том числе редких и редкоземельных металлов. Газообразные продукты сжигания остатка экстракции, очищенные от твердых частиц, направляют для улавливания SO2, SO3 и в случае необходимости NOx. Очистку дымовых газов производят по известной схеме сжигания мазутов на теплоэлектростанциях.

Изобретение поясняется чертежом (фиг.1), на котором представлена блочная схема реализации процесса деасфальтизации и деметаллизации тяжелого нефтяного сырья экстракцией растворителем с последующим сжиганием остатка экстракции и получением концентрата ценных металлов.

Изобретение иллюстрируется следующими примерами.

Пример 1

В качестве тяжелого нефтяного сырья используют гудрон ОАО "АНК Башнефть" "Башнефть-УНПЗ", микроэлементный состав которого представлен в табл. 1.

Для проведения процесса используют диоксид углерода - углекислоту высшего сорта чистотой 99,8% по ГОСТ 8050-85, а в качестве органического модификатора - толуол химически чистый (х.ч.) чистотой 99,8% по ТУ 2631-020-44493179-98.

Осуществляют смешение сверхкритического диоксида углерода и органического модификатора - толуола (1). Предварительно нагретую для снижения вязкости навеску тяжелого нефтяного сырья массой 100 грамм загружают в экстрактор с периодической загрузкой сырья и выгрузкой остатка. После загрузки образца и герметизации установки экстрактор и предварительный нагреватель растворителя нагревают до необходимой температуры экстракции, и начинают подачу диоксида углерода и его модификатора с заданными расходами при помощи насосов высокого давления. После достижения заданного давления регулятор обратного давления на выходе из экстрактора начинает выпускать поток деасфальтизата с растворителем в сборник (3). Отсчет времени экстракции проводят с момента установления заданных значений температуры и давления. После сброса избыточного давления образующийся раствор деасфальтизата собирают из сепаратора, а также подводящих линий посредством прокачки через них растворителя, в то время как остаток процесса выгружают из экстрактора и количественно собирают также при помощи растворителя, в качестве которого используют толуол. В дальнейшем растворы деметаллизата (4) и смолисто-асфальтенового тяжелого остатка подвергают дистилляции (5) с использованием роторного испарителя для удаления остатков органического растворителя.

Экстракцию проводят при температуре 50°С и давлении 300 бар, что обеспечивало плотность диоксида углерода на уровне 0.87 г/мл. Время экстракции составляет 240 минут, а суммарный расход растворителя 50 г/мин при концентрации толуола в составе диоксида углерода 25% мас. Выход экстракта (деметаллизата) составляет 59,9% мас., а тяжелого остатка - 40,1% мас., соответственно. Обеспечивают степень деметаллизации гудрона по основным микроэлементам в его составе, ванадию и никелю, на уровне 94% мас.

Далее тяжелый остаток экстракции направляют в печь для сжигания (6) при температуре 900°С с коэффициентом избытка воздуха - 1,1 и выдерживают при этой температуре в течение 1 ч. Выход золошлакового остатка составляет 0,6% мас., в нем содержится, % мас.: V2O5 - 38,1; NiO - 11; сумма кислородных соединений РЗМ - 0,0005, остаточный С - 17,5.

Пример 2

Способ осуществляют так же, как в примере 1, но сжигание смолисто-асфальтенового остатка проводят при температуре 1300°С с коэффициентом избытка воздуха - 1,3.

Выход золошлакового остатка составляет 0,58% мас., в нем содержится, % мае: V2O5 - 39,4; NiO - 11,4; сумма кислородных соединений РЗМ-0,00052 и С - 11,3.

Пример 3

В качестве тяжелого нефтяного сырья используют остаток гидроконверсии гудрона ОАО "АНК Башнефть" "Башнефть-УНПЗ", состав которого представлен в табл. 2. В процессе гидроконверсии использован суспендированный катализатор.

Способ осуществляют также, как в примере 1. Выход деметаллизата составил 55,8% мас., а смолисто-асфальтенового остатка, соответственно - 44,2% мас. Обеспечивают степень деметаллизации остатка гидроконверсии по основным микроэлементам в его составе, ванадию и никелю, или степень извлечения металлов в тяжелый остаток экстракции на уровне 90% мас. Выход золошлакового остатка составляет 1,66% мас., в нем содержится, % мас.: V2O5 - 38,8; NiO - 11,6; сумма кислородных соединений РЗМ - 0,0005 и С-16,2.

Пример 4

Способ осуществляют также, как в примере 3, но сжигание проводят при 1300°С с коэффициентом избытка воздуха 1,3. Выход золошлакового остатка составляет 1,63% мас., в нем содержится, % мас.: V2O5 - 40,2; NiO - 11,88; сумма кислородных соединений РЗМ - 0,00054 и С - 10,0.

При применении других жидких модификаторов выход смолисто-асфальтенового остатка, как правило, увеличивается, и содержание ценных металлов в концентрате несколько снижается, однако одновременное получение промышленного концентрата ценных металлов с высоким их содержанием (степень деметаллизации до 90% при содержании ценных металлов в золошлаковом остатке до 50%) и ценного масляного продукта обеспечивается и в этом случае.

edrid.ru

Способ получения концентрата металлорганических соединений

 

(ii) 499289

ОПИСАНИЕ

ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

Союз Советских

Социалистических

Республик (б1) Дополнительное к авт. свид-ву (22) Заявлено 10.07,74 (21) 2040503/23-4 с присоединением заявки № (23) Приоритет

Опубликовано 15.01.76. Бюллетень № 2

Дата опубликования оп исания 14.04.7б (5i) М. Кл. С 10G 25/00

Государственный комитет

Совета Министров СССР (5З) УДК 665.662.2 (088.8) ао делам изобретений н открытий (72) Авторы изобретения

М. А. Гонсалес, 3. А. Мынова, Т. П. Подобаева, Л. А. Сафина, В, В. Маншилин, Л. Г. Маширева и В. В. Жилкин (71) Заявитель (54) СПОСОБ ПОЛУЧЕНИЯ КОНЦЕНТРАТА

МЕТАЛЛОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Изобретение относится к способу получения концентратов металлорганических соединений из нефти и нефтепродуктов.

В настоящее время наблюдается дефицит ванадия, поэтому большое внимание уделяется выделению ванадия и других металлов, содержащихся в нефти в микроколичествах. Поскольку металлы встречаются в нефти в концентрациях ниже сотых и тысячных долей процента, важнейшим показателем при выделении является их концентрация.

Наиболее распространенный в нефти металл ванадий встречается в концентрациях до

0,015 — 0,018 вес. o/0, что в 10 — 20 раз ниже концентрации этого элемента в минералах, из которых его добывают в промышленном масштабе.

Известны различные способы концентрации металлов из нефти и нефтяных фракций, при которых нефть или нефтяную фракцию подвергают каталитическому крекингу или гидрооблагораживанию в присутствии водорода на адсорбентах-катализаторах. При этом, как правило, около 70% металлов остается на катализаторе, который затем подвергают регенерации и из которого специальными операциями могут быть извлечены металлы.

Известен способ получения ванадиевого концентрата из обессоленной нефти с последующей дробной перегонкой и коксованием кубового остатка. Продукт коксования тонко измельчают и сжигают. Из газообразных продуктов сгорания улавливают и выделяют твердые частицы, представляющие собой ванадиевый концентрат.

Известен также способ извлечения металлов из нефти и нефтепродуктов путем контак тирования с катионообменным материалом с последующей обработкой катионита соляной

10 кислотой для выделения из него металлов.

Известные способы можно применять только в том случае, когда необходимо проводить каталитическую обработку нефтяной фракции, применение их только с целью выделе15 ния металлов слишком дорого и неэкономично. При этих способах металлорганические соединения разрушаются и не могут быть получены в чистом виде. Известно также, что наиболее высокую концентрацию металлорга20 нических соединений нефти удается получить способом деасфальтизации растворителями.

При этом, в частности, ванадий удается сконцентрировать до 0,15 — 0,2 вес. %, что не превышает его концентрацию в минералах.

25 Цель изобретения — повышение концентрации металлорганических соединений.

Согласно изобретению нефть или нефтепродукт последовательно обрабатывают порциями адсорбента, с отделением каждой порции

30 от обработанного продукта.

Количество порций азрогеля (величина порции, вес. %) Показатель

10 (2) 16 (1) 22 (0,5) 3 (7) 4 (5) 1 (20) 2 (10) Время контакта каждой порции, мин

Конечная степень извлечения ванадия из нефти, вес. %

Концентрация ванадия в десорбате, вес. %

20

100

200

83

94

68

0,45

0,218

0,139

0,094

0,075

0,083

0,066

Формула изобретения

Составитель В. Матишев

Техред Т. Курилко

Корректор Л. Денискина

Редактор Е. Хорина

Заказ 615/13 Изд. № 1054 Тираж 629 Подписное

ЦИИИПИ Государственного комитета Совета Министров СССР по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Типография, пр. Сапунова, 2

Порции адсорбента подвергают десорбции известными способами, например растворителем, с последующей его отгонкой от раствора концентрата. Концентрат металлорганических соединений, содержащихся в нефти, получают в остатке от отгопки.

Предлагаемый способ заключается в следующем.

Нефть или нефтяную фракцию при необходимости разбавляют легким растворителем для снижения вязкости и при температуре не ниже 20 С, давлении атмосферном или выше в течение не менее 15 мин приводят в контакт с небольшим количеством адсорбента. При этом чем меньше порции подаваемого адсорбента, тем выше получаемая впоследствии концентрация металлорганических соединений.

В указанных условиях нефтепродукт многократно обрабатывают свежим адсорбентом, каждый раз отделяя его, промывая легким растворителем и направляя на десорбцию.

Десорбцию с адсорбента можно осуществлять либо с каждой части в отдельности, либо со всех частей вместе. После десорбции растворитель отгоняют и в остатке получают концентрат металлорганических соединений нефти.

Пример 1. 100 r арланской нефти, содержащей 1 10 — вес. % ванадия, разбавляют

Из приведенных данных видно, что предлагаемый способ позволяет получить концентрат органических соединений ванадия с конценСпособ получения концентрата металлорганических соединений путем обработки нефти или нефтепродукта твердыми адсорбентами с последующим выделением концентрата из адсорбента, отл ич а ющийся тем, что, с

100 г легкой бензиновой фракции и при 40 С и атмосферном давлении обрабатывают последовательно 22 порциями по 0,5 вес. % аэрогеля, в течение 20 мин каждой. Каждый

5 раз порцию аэрогеля отфильтровывают, тщательно промывают легкой бензиновой фракцией и направляют на совместную десорбцию, которую осуществляют обычным способом, в частности спирто-бензольной смесью. После

10 отгона спирто-бензольной смеси получают

2,1 г десорбата, содержащего 0,0096 r ванадия, или 0,45 вес. %. Степень извлечения от потенциала составляет 96%.

Пример 2. 100 г мазута, содержащего

15 1,4. 10 — вес. % ванадия, разбавляют трехкратным по весу количеством бензиновой фракции и обрабатывают в условиях примера

1 десятью порциями по 2,0 вес. % аэрогеля.

В дальнейшем гэрогель обрабатывают, как в

20 примере 1.

Получают 0,91 г десорбата, содержащего

0,784 10 — 2 r, или 0,86 вес. % ванадия. Степень извлечения ванадия от потенциала составляет 88 вес. %.

Результаты аналогичных примеров приведены в таблице. Согласно этим примерам обработку нефти проводят порциями аэрогеля при общем количестве его 10 — 20 вес. % при

30 температуре 40 С и атмосферном давлении. трацией его в 2 — 3 раза выше, чем известным способом, при одновременном увеличении степени извлечения от потенциала. целью повышения концентрации металлорганических соединений в концентрате, обработку осуществляют последовательно порциями адсорбента с отделением каждой порции от обработанного продукта.

  

www.findpatent.ru

Способ удаления металлов из потока углеводородов

Изобретение относится к способу обработки потоков углеводородов с использованием адсорбентов для удаления металлических компонентов. Способ заключается в контакте потока углеводородов с адсорбентом, содержащим от 50 до 97 вес.% оксида алюминия и от 50 до 3 вес.% щелочноземельных оксидов, выбранных из оксидов кальция и магния, с весовым отношением оксидов от 10:1 до 50:50. Адсорбент имеет величину поверхности по БЭТ не менее 100 м2/г, кажущуюся пористость от 60 до 80%. Способ проводят при температуре от 250°С до 350°С. Способ позволяет удалять металлические компоненты. 2 з.п. ф-лы, 3 табл.

 

Предпосылки создания изобретения

Данное изобретение относится к обработке потоков углеводородов с использованием адсорбентов, эффективно удаляющих металлические компоненты, часто присутствующие в таких потоках.

Потоки углеводородов на выходе из нефтеперерабатывающего завода часто содержат металлические примеси в виде органических или неорганических соединений металлов или в виде самих металлов. Эти металлические примеси могут создавать серьезные проблемы, такие как дезактивацию катализаторов, деградацию свойств металлов, используемых в промышленном оборудовании, экологическую опасность и токсическое загрязнение окружающей среды. Чтобы избежать указанных вредных последствий или по крайней мере ослабить их, крайне желательно удалять эти вещества из потоков углеводородов.

Сущность изобретения

Данное изобретение представляет собой способ удаления металлических примесей из потока, который основан на взаимодействии потока углеводородов с адсорбентом, состоящим из оксида алюминия в количестве от 50 до 96 вес.% и оксидов щелочноземельных металлов в количестве от 50 до 4 вес.%, выбранных из оксидов кальция и магния в соотношении от 90:10 до 50:50, с поверхностью по БЭТ не менее 100 м2/г. Поток углеводородов контактирует с адсорбентом при температуре между 20° С и 450° С и предпочтительно между 250° С и 350° С.

Металлы, которые можно удалять из потоков производств нефтепереработки с помощью данного изобретения, включают свинец, алюминий, кремний, железо, хром, цинк, магний, никель, натрий, кальций, ванадий, ртуть, фосфор и магний. Как правило, поток углеводородов содержит углеводороды с пятью или более углеродными атомами.

Термин “адсорбент”, используемый в данном изобретении, означает керамические материалы указанного состава в форме таблеток, шариков, стрежней или в другой форме с достаточной пористостью (что отражается на величине поверхности) для физического захвата металлических примесей в порах адсорбента, их адсорбции на поверхности пор или, чаще всего, для химической реакции примесей с веществами адсорбента с образованием компонентов, которые далее не переносятся потоком.

Соотношения компонентов вычисляют из весов взятых первоначально компонентов со стехиометрической поправкой на оксиды, остающиеся после прокаливания заявляемого адсорбента. Эта операция позволяет получить достаточно точные значения, как можно видеть из последующих примеров.

БемитСаСО3MgCO3Аl2O3CaOMgO
908.21.892.26.61.2
6036465.931.13.0
963.60.497.12.60.3
962.02.0971.61.4

Первые три состава были приготовлены с использованием доломитного известняка и четвертый состав - простого доломита. Можно видеть, что при переходе от предшественников к конечным прокаленным продуктам относительные соотношения меняются незначительно.

Адсорбент может иметь ту или иную форму в зависимости от назначения. Например, иметь форму коротких стержней или таблеток, полых цилиндров, колец, подушечек и т.п. Особенно часто употребляемая форма описана в патенте USP 5,394,423. Адсорбент может также применяться в виде монолитов с множественными отверстиями, уложенных слоями. Однако такие монолитные адсорбенты часто менее предпочтительны для целей, заявленных в данном изобретении.

Считается, что наиболее вероятный механизм удаления металла из потока углеводородов включает реакцию металла с адсорбентом. Адсорбция металла на поверхности адсорбента ускоряется в случае, если и металл, и адсорбент полярны и помещены в неполярную жидкость (поток углеводородов). Этот процесс ускоряется при нагревании. Активность адсорбента может быть восстановлена путем удаления химически удерживаемых примесей с помощью обратной промывки слоя, содержащего дезактивированный адсорбент, горячим (например, при температуре 150° С) водяным паром. Достаточно полное удаление примесей достигается при обработке паром в течение 8 ч. Как отмечено выше, перед реактивацией желательно удалить тяжелые углеводородные остатки из пор адсорбента с помощью углеводородного растворителя, например, толуола или другого растворителя, обогащенного ароматическими углеводородами, типа XYSOL™ (поставляемого фирмой Trysol Canada Ltd. Of Calgary, Canada), предварительно нагретого до температуры ~300° С.

Установлено, что промывка горячим метанолом (например, при температуре ~150° С) между обработками растворителем и водяным паром способствует удалению остаточного масла и облегчает проникновение пара в поры. Такой же эффект достигается при добавлении некоторого количества метанола к водяному пару. Метанол особенно эффективен, однако полагают, что его можно заменить на любой низкомолекулярный спирт, например, этанол, н-пропиловый или изопропиловый спирт. Адсорбент можно приготовить по методике, включающей

a) образование водной суспензии, содержащей 50-97 вес.% гидратированного оксида алюминия, например, бемита, с добавкой от 50 до 3 вес.% смеси карбонатов кальция и магния с относительным отношением карбонатов кальция и магния от 10:1 до 50:50, причем веса бемита и смеси карбонатов приведены в расчете на вес твердых компонентов суспензии;

b) пептизацию суспензии путем добавления кислоты;

c) экструдирование пептизированной суспензии с образованием частиц адсорбента нужной формы и

d) сушку для удаления воды и прокаливание при температурах от 650 до 850° С.

Гидратированный оксид алюминия можно выбрать, например, из любого коммерческого бемита, которому приписывают формулу АlOOН или точнее Аl2O3·Н2O.

Смесь карбонатов кальция и магния обычно состоит из порошка доломита или предпочтительно доломитового известняка, который представляет собой смесь доломита (в котором кальций и магний содержатся примерно в равных атомных количествах) и кальцита с преобладанием кальцита, а также содержит несколько процентов примесей, таких как оксид кремния и железо. При прокаливании эта смесь разлагается до соответствующих оксидов. Поэтому заявляемые продукты в принципе можно готовить путем добавления оксидов или гидроксидов в суспензию бемита. Однако это потребовало бы большего количества кислоты для пептизации суспензии и поэтому менее предпочтительно.

Для диспергирования карбонатов в золе бемита предпочтительно вводить их в виде порошка со средним размером частиц ~ 50 микрон или меньше. Этим требованиям удовлетворяет продажный доломитовый известняк от National Lime and Stone Company под торговой маркой Bucyrus Microfine (99% порошка проходит через сито 325 меш). Этот продукт содержит карбонаты кальция и магния в весовом соотношении примерно 6:1.

Кислота, которую добавляют для пептизации суспензии, представляющей собой дисперсию компонента, содержащего кальций/магний в золе бемита, может быть выбрана из кислот, традиционно применяемых для пептизации таких золей. Поскольку прокаливание приводит к разложению кислоты, предпочтительно применять не минеральные кислоты типа азотной, соляной или серной, а сильные органические кислоты, например, уксусную или лучше муравьиную. Пептизированный золь должен быть устойчивым, чтобы при формовании, например, экструзией, можно было получить образцы, сохраняющие форму во время сушки и прокаливания. Достаточно добавить такое количество кислоты, чтобы понизить рН до 5 или ниже.

Сушку образцов предпочтительно проводить в таких условиях, чтобы избежать их разрушения при удалении воды. Это достигается при низкой температуре порядка 100° С (хотя в большинстве случаев достаточно температуры несколько выше 50° С) в течение продолжительного времени до двух дней, хотя обычно для сушки достаточно 10-24 ч.

Для формирования оксидов кальция и магния из соответствующих карбонатов, удаления связанной воды и превращения бемита в гамма-оксид алюминия или другие алломорфные или аморфные модификации, прокаливание сухих образцов должно быть продолжительным. Однако предпочтительно выбрать такие условия прокаливания, чтобы избежать образования альфа-оксида алюминия или спекания, что ведет к уменьшению пористости и превращению оксида алюминия в менее активную форму. Поэтому предпочтительно вести прокаливание при температуре максимум 500-800° С и до прекращения потери веса. Обычно нагревания при температуре прокаливания в течение времени от 30 мин до 5 ч бывает достаточно для разложения всех карбонатов и удаления всей связанной воды.

Величина поверхности прокаленного продукта составляет не менее 100 м2/г, например, выше 250 м2/г и предпочтительно от 200 до 250 м2/г.

Описание предпочтительных вариантов реализации изобретения

Далее приведены примеры, иллюстрирующие возможности заявляемого адсорбента в эффективном удалении загрязняющих примесей из потоков углеводородов.

В последующих примерах идентификация индивидуальных элементов была проведена с помощью Меtrо Tech System Ltd. of Calgary, Canada.

В примерах 1-4 использован поток углеводородов, содержащий 48 металлических примесей в различных количествах, идентифицированный по плотности в градусах Американского нефтяного института. Поток прокачивают через нагреваемую колонну из нержавеющей стали длиной 25 см и диаметром 1.27 см, заполненную 8 г адсорбента. Во всех случаях адсорбент обладал следующими свойствами. Величина поверхности по БЭТ составляла 219 м2/г, кажущаяся пористость 78.5%, адсорбция воды 103.4%, кажущаяся удельная плотность 3.54 г/см3 и плотность вещества 0.76 г/см3.

Анализ адсорбента показал, что он содержит 92.2 вес.% оксида алюминия, 6.6 вес.% оксида кальция и 1.2 вес.% оксида магния.

Пример 1

В первом опыте поток углеводородов, содержащий 24 м.д. железа, 2 м.д. цинка и 2 м.д. свинца, пропускают через описанный выше адсорбент со скоростью 3.1 мл/мин. Начальную температуру поддерживают на уровне 273.9° С, через 60 ч поднимают до 301.7° С и через 120 ч еще раз поднимают до 315.6° С. Количества удаленных металлов спустя заданное число часов, выраженные в процентах от м.д. элемента в потоке, приведены в таблице 1.

Таблица 1
ВРЕМЯ/ЧСВИНЕЦЖЕЛЕЗОЦИНК
610087100
1210085100
242481100
361488100
483895100
60*10098100
7210098100
84100100100
963396100
1083997100
120*38100100
13239100100
14439100100
1569699100
16210096100
1747891100
186100100100
1988393100
2009199100

*Показывает подъем температуры.

Пример 2

Через 200 ч колонку отмыли толуолом и регенерировали водяным паром, как описано выше. Этот опыт провели при 315.6° С при скорости потока 3.1 мл/мин. Поток углеводородов содержал те же примеси и в том же количестве, как в примере 1. Результаты приведены в таблице 2, где в каждой колонке приведены количества удаленных элементов в процентах от м.д. присутствующего элемента.

Таблица 2
ВРЕМЯ/ЧСВИНЕЦЖЕЛЕЗОЦИНК
6100100100
24100100100
36100100100
48100100100
60100100100
72100100100
84100100100
96100100100
108100100100
120100100100
132100100100
144100100100
156100100100
162100100100

Пример 3

После опыта, продолжавшегося 162 ч, как описано в примере 2, поток углеводородов заменяли на поток, содержащий следующие металлические примеси: железо - 116 м.д.; цинк - 2 м.д.; свинец - 3 м.д.; алюминий - 223 м.д.; магний - 49 м.д.; натрий - 38 м.д.; кальций - 57 м.д. и марганец - 1 м.д.

Опыт продолжали 24 ч в условиях, описанных в примере 2. Отборы проб через 12 и 24 ч показали, что за это время каждая примесь была удалена на 100%.

Пример 4

В этом примере изучено влияние температуры на удаление различных элементов. Условия эксперимента были такие же, как в вышеприведенных примерах, но с новой загрузкой адсорбента и потоком углеводородов, содержащим: ртуть - 6 м.д.; медь - 2.6 м.д.; железо - 8.9 м.д.; цинк - 0.1 м.д. и фосфор - 8.2 м.д. Поток пропускали со скоростью 3.1 мл/мин в течение 6 ч при температурах, изменяющихся так, как показано в таблице 3.

Таблица 3
ВРЕМЯ/Ч1356
ТЕМП (° С)110210280280
Ртуть50%66%77%85%
Медь81%96%100%100%
Железо0%30%100%100%
Цинк100%100%100%100%
Фосфор100%100%100%100%

Пример 5

В этом примере проведена оценка адсорбента на пилотной установке с использованием потока углеводородов, предназначенного для переработки. Плотность потока в градусах Американского нефтяного института составляла 45-50, содержание воды 1-10% и твердых примесей 1-3%. Основную воду и осадок удаляли, и поток прокачивали через два темплообменника и нагреватель, чтобы поднять температуру до уровня между 248.9° С и 315.6° С. Затем горячий поток пропускали через слой, содержащий примерно 1.87 м3 (66 кубических футов) того же адсорбента, что и в предыдущих примерах. Объем обрабатываемого потока составлял от 25 до 38 в сутки. Давление в потоке составляло от 517 кН/м2 до 620 кН/м2 (от 75 до 90 мм рт.ст.), причем на 50-60% за счет пара. Поток пара отделяли и не пропускали через адсорбент. После пропускания жидкого потока через слой адсорбента его соединяли с паровым потоком и направляли на ректификационную колонну. После обработки всех 2300 баррелей получали следующие степени очистки (проценты удаленных металлов): фосфор - 98%; натрий - 72%; железо - 95%; алюминий - 97%; медь - 92%; цинк - 99%; кальций - 94%; магний - 98%; кремний - 77%; свинец - 49% и хром - 89%.

Проба, взятая после обработки 1900 баррелей, содержала железо, кальций, натрий, магний, алюминий, кремний и фосфор. После пропускания потока углеводородов через слой адсорбента степень удаления этих элементов составляла: кальций - 90%; натрий - 73%; магний - 98%; алюминий - 95%; железо - 92%; кремний - 15% и фосфор - 96%.

Пример 6

В этом примере поток углеводородов представлял собой сырую нефть из Северной Альберты (Northern Alberta), содержащую цинк, никель, натрий и ванадий. Пробу этого сырья помещали в автоклав с 10 г адсорбента, использованного в предыдущих примерах. Автоклав нагревали до 300° С при давлении азота 689 кН/м2 (100 мм рт.ст.). Через 30 мин пробу проанализировали и нашли, что были удалены 45% никеля, 21% натрия, 76% натрия и 24% ванадия.

Представленные примеры не носят ограничительного характера. Успешные результаты были получены заявителем при испытаниях адсорбентов с иными значениями величины поверхности по БЭТ - 109, 112, 115, 199, 274 м2/г.

1. Способ удаления металлов из потока углеводородов, заключающийся в контакте потока углеводородов с адсорбентом, содержащим от 50 до 97 вес. % оксида алюминия и от 50 до 3 вес. % щелочноземельных оксидов, выбранных из оксидов кальция и магния, с весовым отношением оксидов от 10:1 до 50:50, причем адсорбент имеет величину поверхности по БЭТ не менее 100 м2/г.

2. Способ по п.1, отличающийся тем, что адсорбент имеет кажущуюся пористость от 60 до 80%.

3. Способ по п.1, отличающийся тем, что его проводят при температуре от 250 до 350°С.

www.findpatent.ru

Способ выделения сероорганических соединений из нефти и нефтепродуктов

 

Изобретение относится к способам выделения сероорганических соединений нефти и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Описывается способ выделения сероорганических соединений из нефти и нефтепродуктов (CCH) путем жидкостно-адсорбционной хроматографии на силикагеле, импрегнированном хлоридами металлов, последовательным элюированием гексаном, бензолом, хлороформом, этанолом. Силикагель импрегнируют хлоридом никеля в количестве 1-7 мас.%, процесс проводят при соотношении сорбент: сырье 20:1. Технический результат - повышение степени концентрирования сульфидов при высокой общей степени выделения ССН. 2 табл.

Изобретение относится к способу выделения сероорганических соединений нефти (CCH) и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Способ позволяет выделять CCH из сырых нефтей без их предварительной подготовки, нефтяных фракций и модельных смесей.

Известны способы выделения и разделения сероорганических соединений нефти с помощью жидкостной хроматографии на силикагеле, модифицированном ацетатом ртути (Anal. Chem. -1966, v. 38, N 11, P. 1558 - 1562) [1], нитратом серебра (JP N 54-15761, C 10 G 25/00, 18.06.79) [2], тетрахлоридом олова (RU 2083640, 1997) [3] , хлоридами палладия (Fuel. -1986, v. 65, N 2, P. 27 - 273) [4] и цинка (Anal. Chem. -1967. - v. 39. N 10. P. 1163 - 1164) [5]. Наиболее близким к предлагаемому является способ выделения CCH путем жидкостной адсорбционной хроматографии (ЖАХ) на силикагеле, импрегнированном тетрахлоридом олова [3], который взят в качестве прототипа. Данный способ не дает возможности получить концентрат, обогащенный сернистыми соединениями сульфидного характера, при высокой степени выделения CCH. Задача предлагаемого изобретения - повышение степени концентрирования сульфидов при высокой общей степени извлечения CCH из нефтей. Технический результат достигается тем, что процесс разделения CCH проводят ЖАХ на адсорбенте: силикагель марки L 100/250 (ЧССР), содержащий 1 - 7% хлорида никеля, при соотношении адсорбента к нефтяному объекту 20:1 и при использовании элюентов - гексана, бензола, хлороформа и этилового спирта. Предлагаемый способ выделения CCH, в отличие от прототипа, позволяет не только выделить сернистые соединения до 50%, сконцентрировать сульфиды в хроматографической фракции, но и разделить их по типам структур (данные ЖАХ смеси модельных соединений, табл. 1). Пример 1. Хроматографическую колонку 50x10 мм заполняют 2 г адсорбента, содержащего 5 мас.% хлорида никеля. Адсорбент готовят следующим образом. К 100 г силикагеля марки L 100/250 (ЧССР), предварительно прокаленного в течение 2-х часов при 90 - 100oC, добавляют 5 г NiCl2, растворенного в 100 мл дистиллированной воды, и смешивают смесь 4 часа при 190 - 200oC. Сушат полученную массу 4 часа при 95oC в сушильном шкафу и за 24 часа до использования прокаливают при 200oC в течение 6 часов. ЖАХ проводят при соотношении массы образца к массе адсорбента 1:20. В колонку помещают смесь модельных соединений (содержание, г), состоящую из 1,3-диметилнафталина (0.0193), бензиофена (0.015), дибензатиофана (0.0087), фенантрена (0,01295), 8p O-децил-тиофена (0.018), дигексилсульфида (0.013), дифенилсульфида (0.0181). Элюирование осуществляют в последовательности (объем, мл): н-гексан (100), бензол (100), хлороформ (100). Хроматографические фракции обрабатывают 0,1 н. раствором щелочи, промывают водой до нейтральной реакции, сушат и отгоняют растворитель и анализируют на газожидкостном хроматографе "Цвет 500М" с программным обеспечением. Результаты анализа представлены в табл.1. Пример 2. Хроматографическую колонку 50x10 мм заполняют 2 г адсорбента, содержащего 1 мас.% хлорида никеля. В колонку помещают смесь модельных соединений и последующие операции реализуются согласно примеру 1. Результаты представлены в табл. 1. Пример 3. Хроматографическую колонку 50x10 мм заполняют 2 г адсорбента, содержащего 3 мас.% хлорида никеля. В колонку помещают смесь модельных соединений и последующие операции реализуются согласно примеру 1. Результаты представлены в табл. 1. Пример 4. Хроматографическую колонку 50x10 мм заполняют 2 г адсорбента, содержащего 7 мас.% хлорида никеля. В колонку помещают смесь модельных соединений и последующие операции реализуются согласно примеру 1. Результаты представлены в табл. 1. Пример 5. Хроматографическую колонку 500x10 мм заполняют 20 г адсорбента, содержащего 5 мас.% хлорида никеля. В колонку помещают 1 г высокосернистой фракции 200 - 340oC (Sо = 2.83, Sс = 1.46).* Элюирование осуществляют в последовательности (объем, мл): гексан (200), бензол (200), хлороформ (200). Последующие операции реализуют согласно примеру 1. Результаты анализа представлены в табл. 2. Степень выделения (в бензольную и хлороформную фракции) составляет Sо = 59.5%, Sс = 70.2%.*Sо - содержание общей серы; Sс - содержание сульфидной серы. Пример 6. Хроматографическую колонку 500x10 мм заполняют 20 г адсорбента, содержащего 1 мас.% хлорида никеля. Последующие операции реализуют согласно примеру 5. Результаты анализа представлены в табл. 2. Степень выделения (в бензольную и хлороформную фракции) составляет Sо = 11.3%, Sс = 20.1%. Пример 7. Хроматографическую колонку 500x10 мм заполняют 20 г адсорбента, содержащего 3 мас.% хлорида никеля. Последующие операции реализуют согласно примеру 5. Результаты анализа представлены в табл. 2. Степень выделения составляет Sо = 63%, Sс = 66.6%. Пример 8. Хроматографическую колонку 500x10 мм заполняют 20 г адсорбента, содержащего 7 мас.% хлорида никеля. Последующие операции реализуют согласно примеру 5. Результаты анализа представлены в табл. 2. Степень выделения составляет Sо = 48.1%, Sс = 59.3%. Пример 9. Хроматографическую колонку 500x10 мм заполняют 20 г адсорбента, содержащего 5 мас. % хлорида никеля. В колонку помещают 1 г нефти месторождения Северо-Калиновое (Западная Сибирь) (Sо = 0.94, Sс = 0.18 мас.%). Элюирование осуществляют в последовательности (объем, мл): гексан (200), бензол (200), хлороформ (200), этиловый спирт (200). Последующие операции реализуют согласно примеру 5. Результаты анализа представлены в табл. 2. Степень выделения составляет Sо = 47.5%, Sс = 85%. Пример 10. Хроматографическую колонку 500x10 мм заполняют 20 г адсорбента, содержащего 1 мас.% хлорида никеля. Последующие операции реализуют согласно примеру 9. Результаты анализа представлены в табл. 2. Степень выделения составляет Sо = 71%, Sс = 84.1%. Пример 11. Хроматографическую колонку 500x10 мм заполняют 20 г адсорбента, содержащего 3 мас.% хлорида никеля. Последующие операции реализуют согласно примеру 9. Результаты анализа представлены в табл. 2. Степень выделения составляет Sо = 54.7%, Sс = 78.8%. Пример 12. Хроматографическую колонку 500x10 мм заполняют 20 г адсорбента, содержащего 7 мас.% хлорида никеля. Последующие операции реализуют согласно примеру 9. Результаты анализа представлены в табл. 2. Степень выделения составляет Sо = 51.8%, Sс = 50.7%. Пример 13. Хроматографическую колонку 500x10 мм заполняют 20 г адсорбента, содержащего 5 мас.% хлорида никеля. В колонку помещали 1 г нефти месторождения Уньвинское (Волго-Урал) (Sо = 0.57, Sс = 0.14мас. %). Последующие операции реализуют согласно примеру 9. Результаты анализа представлены в табл. 2. Степень выделения составляет Sо = 50.4%, Sс = 68.3%. Пример 14. Хроматографическую колонку 500x10 мм заполняют 20 г адсорбента, содержащего 1 мас.% хлорида никеля. Последующие операции реализуют согласно примеру 13. Результаты анализа представлены в табл. 2. Степень выделения составляет Sо = 51.7%, Sс = 52.7%. Пример 15. Хроматографическую колонку 500x10 мм заполняют 20 г адсорбента, содержащего 3 мас.% хлорида никеля. Последующие операции реализуют согласно примеру 13. Результаты анализа представлены в табл. 2. Степень выделения составляет Sо = 82.1%, Sс = 73.9%. Пример 16. Хроматографическую колонку 500x10 мм заполняют 20 г адсорбента, содержащего 7 мас.% хлорида никеля. Последующие операции реализуют согласно примеру 13. Результаты анализа представлены в табл. 2. Степень выделения составляет Sо = 71.4%, Sс = 64.9%. Пример 17 (прототип). Хроматографическую колонку 500x10 мм заполняют 10 г силикагеля АСК и добавляют 10 мл гексана, содержащего 0,11 г SnCl4 (2 мас.% на силикагель), который медленно пропускают через силикагель. Не допуская высыхания верха колонки, добавляют 50 мл гексана. После пропускания элюента в колонку помещают 1 г нефти месторождения Ван-Еган (Западная Сибирь). Элюирование осуществляют в последовательности: гексан - бензол - хлороформ - спирт (ацетон). После разложения комплексов 0,1N раствором щелочи, отмывают органический слой до нейтральной реакции, сушат и отгоняют растворитель. Результаты анализа представлены в табл. 2. Степень выделения CCH составляет Sо = 71%, Sс = 35.1%.

Формула изобретения

Способ выделения сероорганических соединений из нефти и нефтепродуктов путем жидкостно-адсорбционной хроматографии на силикагеле, импрегнированном хлоридами металлов, последовательным элюированием гексаном, бензолом, хлороформом, этанолом, отличающийся тем, что силикагель импрегнируют хлоридом никеля в количестве 1 - 7 мас.%, процесс проводят при соотношении сорбент : сырье 20 : 1.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3

www.findpatent.ru

Выделение легких фракций из нефтяных шламов :: Продукция :: НПО ЭНЕРГОМАШАВТОМАТИКА

Выделение легких фракций из нефтяных шламов

Выделение легких фракций из нефтяных

шламов, являющихся отходами нефтедобывающих производств

Добыча нефти на современном технологическом этапе сопровождается образованием значительного количества разнообразных отходов:

  • буровые шламы, являющиеся смесью полученных при очистке нефти пластовых вод,
  • буровые и тампонажные растворы, продукты испытания скважин, материалы для приготовления и химической обработки буровых и тампонажных растворов,
  • ГСМ, хозяйственно-бытовые сточные воды и твердые бытовые отходы, ливневые сточные воды.

Процентное соотношение между этими компонентами может быть самое разнообразное в зависимости от геологических условий, технического состояния оборудования, культуры производства и т.д. Так, по данным ОАО "Когалымнефтегаз", при бурении скважины глубиной 2600 м в амбаре содержится около 65% воды, 30% шлама (выбуренной породы), 5,5% нефти, 0,5% бентонита и 0,5% различных присадок, обеспечивающих оптимальную работу буровой установки.

Содержание нефтепродуктов в шламе того же месторождения колеблется в пределах от 2000 до 13870 мг/кг. Нефтяная часть шлама представлена в основном парафино-нафтеновыми углеводородами — 41,8% масс., из них 20% масс. — твердые парафины. асфальтены — 5,6% масс.; смолы — 19,2% масс., полициклические ароматические углеводороды — 20,1 % масс. В образцах асфальто-смолистых парафиновых отложений, отобранных из амбаров нефтепромыслов Западной Сибири, содержание парафино-церезиновых компонентов с температурами плавления 66-84°С составляет 40-70% масс.; содержание органической части — 72-90% масс. Нефтяная часть отходов распределяется в шламовом амбаре следующим образом: 7-10% нефтеуглеводородов сорбируется на шламе, 5-10% находится в эмульгированном и растворенном состоянии, остальные углеводороды находятся на поверхности амбара в виде пленки.

Неорганическую часть составляют в основном окислы кремния и железа (песок, продукты коррозии), небольшие количества (менее 1%) соединений алюминия, натрия, цинка и других металлов. Складируемые в амбарах и на поверхности земли нефтяные отходы испытывают влияние внешних факторов, что создает возможность появления в их составе дополнительных соединений, отсутствующих в исходных техногенно-минеральных образованиях.

Н.Д.Зелинским была предложена идея низкотемпературного каталитического крекинга нефтяного сырья с использованием в качестве катализатора хлорида алюминия. При этом в качестве основной реакции пиролиза выступает крекинг углеводородной цепи с образованием олефина и парафина. Первичные продукты реакции претерпевают дальнейшее расщепление (вторичный крекинг). В итоге получается смесь легких углеводородов, обогащенная олефинами. Конечными продуктами дальнейшего цикла реакций, представляющих собой реакции дегидрирования в условиях пиролиза при температурах 900 – 1000 градусов Цельсия являются полициклические углеводороды и кокс.

Недостатками цикла реакций Н.Д.Зелинского являются высокие затраты энергии на нагрев до температуры реакции, значительные финансовые затраты, связанные с необходимостью использования печи больших размеров, усложнения системы, связанные с необходимостью разделения продуктов пиролиза и полимеризации ненасыщенных углеводородов.

Многообразие протекающих вторичных реакций усложняет точное моделирование процесса. Разнообразие химического состава, токсичность соединений и высокая стоимость доставки на перерабатывающие предприятия затрудняют использование нефтешламов в качестве сырья.

Использование низкотемпературной (газоразрядной) плазмы может стать одним из перспективных и технологичных способов выделения легких фракций из нефтяных шламов.

Особенностью использования низкотемпературной плазмы является возможность достижения высоких энерговкладов (10 – 20 кВт/см2) в объем плазмы. Высокая энергия радикалов, образующихся в плазме, придает процессам, происходящим в плазме высокую химическую активность. Это создает хорошие перспективы для управления процессами деструкции высокомолекулярных соединений нефтяных шламов.

Эксперимент, проводившейся на модельной установке, на другой среде, на водяной пульпе, содержащей высокомолекулярные (крахмалсодержащие) органические соединения, показал, что при пропускании ее через низкотемпературную плазму происходит гидролитическое разложение данных соединений.

При облучении разбавленных водных растворов радикалами и легкими частицами, в том числе ускоренными электронами содержащимися в плазме, растворенные вещества претерпевают химические изменения. Вода, являясь основным по массе компонентом пульпы, поглощает почти всю энергию излучения и переходит в химически активное состояние с возникновением относительно короткоживущих и стабильных продуктов радиолитического разложения — свободных радикалов Н+ и ОН-, а также молекулярных ионов Н2 и Н2О2. Радиолитические превращения парафинов нефти в водяной пульпе происходят в результате интенсивного химического взаимодействия с ними образующихся в плазме радикалов и молекулярных ионов. Окислительно-восстановительные свойства продуктов радиолиза воды и их взаимодействие с растворенными веществами обусловливает возможность не только интенсивного, но и «безреагентного» (без введения дополнительных окислителей и катализаторов) проведения радиационных химических процессов.

Все это позволяет в значительной степени обходить недостатки используемых в настоящее время технологий и рассчитывать на создание компактных плазмохимических реакторов по переработке нефтяных шламов.

На сегодняшний день у нас имеется экспериментальная плазменная установка. Дальнейшая реализация проекта требует продолжения экспериментов по оптимизации свойств водяной пульпы нефтяного шлама и подбора режимов ее пропускания через плазму.

npoema.ru

О микроэлементах нефтей

Огонь лесов с огнем души В печи перемешали.[ ...]

Немаловажное место в составе нефти занимают микроэлементы, и в их числе металлы. Проблема изучения состава нефтей возникла давно, но в настоящее время уровень, масштабность и география этих исследований значительно расширились. Это произошло в связи с такими задачами, как потребность в улучшении технико-экономических показателей добычи, переработки и применения нефти и нефтепродуктов; в рациональном использовании многих ценных нефтяных компонентов; в охране окружающей среды и т. д.[ ...]

Основная масса металла находится в виде сложных поли-дентатных комплексов, многие из которых могут вступать в ионный обмен с металлами, присутствующими в растворах М+А" или на поверхности пород (МА)Х, непосредственно соприкасающихся с нефтью.[ ...]

Металлические компоненты нефти стали предметом пристального изучения, когда выяснилось, что содержание такого элемента, как ванадий, в нефтепродуктах может быть сопоставимо с содержанием его в рудах. В нефтяных гудронах и мазутах, например, концентрация ванадия может достигать десятых долей процента! Нефтями, обогащенными металлами, обычно считают нефти тех месторождений, в которых среднее содержание как V, так и № достигает 1 х 10"2%. Самой богатой ванадием оказалась венесуэльская нефть, где концентрация этого металла может достигать 1,38 х 10"2% (в обессоленной нефти).[ ...]

Пристальное внимание, которое проявляется в настоящее время к ванадийсодержащим соединениям нефти, связано не столько с проблемой извлечения ванадия из альтернативного (нефтяного) сырья, но и с тем, что корродирующие свойства этого металла и его соединений наносят ущерб нефтеперерабатывающему оборудованию и нефтесжигающим установкам, выводят из строя катализаторы переработки нефти, снижают срок службы турбореактивных, дизельных, газотурбинных и котельных установок. Образующиеся при этом неорганические соединения ванадия (ванадаты натрия) являются одной из главных причин интенсивного золового заноса и коррозии высокотемпературных поверхностей. Ванадийорганические соединения снижают эксплуатационные качества готовых нефтепродуктов, а присутствующие в нефтях ванадилпорфирины являются еще и основными стабилизаторами нефтяных эмульсий, затрудняющими их разрушение.[ ...]

При сжигании мазутов в топках котельных установок практически весь ванадий в виде оксидов, обладающих сильным токсическим действием (подробнее см. гл. VII), рассеивается по всей территории региона. Известно, что, например, только за один цикл работы котла ТЭЦ количество V2O5, введенного с мазутом, составляет 19 тыс. т, и половина от этого уносится с дымовыми газами (в течение года).[ ...]

В связи с возможностью получать значительные количества элементов из нефтяного сырья, процессы деметаллизации приобретают все большую значимость. В настоящее время практически нет такого метода нефтепереработки, который рассматривался бы как процесс превращения только органических составляющих нефтей. Поэтому одним из важных направлений современного нефтехимического производства становятся новые технологии извлечения металлических компонентов нефти, чистые в экологическом отношении.[ ...]

Так, разрабатываются способы удаления металлов с использованием магнитных свойств. Например, был предложен метод извлечения из нефти и нефтепродуктов Со, №, Мо, V (находящихся в виде порфириновых и непорфириновых комплексов), для чего сырье помещали в магнитное поле, где указанные комплексы разлагаются, а металлы с помощью магнита могут быть выделены в виде смеси.[ ...]

И все же главная роль здесь принадлежит методам выделения металлов из остаточных продуктов нефтепереработки - коксов.[ ...]

Рисунки к данной главе:

Вернуться к оглавлению

ru-ecology.info

Способ выделения азотистых оснований из нефтей, нефтяных дистиллятов и нефтяных остатков

 

2ЮЗОВ

ОПИСАНИЕ

ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

Союэ Советсниа

Седиалистичесни»

Республиа

Зависимое от авт. свидетельства ¹

Заявлено 12.Х.1966 (№ 1107118/23-4)

c: присоединением заявки №

Приоритет

Опубликовано 06,11.1968. Бюллетень № 6

Дата опубликования описания З.IV.1968

Кл. 23b, 1,/05

МПК С 10g

УДК 665.666.62(088.8) Комитет IIC делам изооретений и открытий ори Совете Иинистров

СССР

Авторы изобретения

H. Н, Безингер, Г. Д. Гальперн и В. M. Каричева

Институт нефтехимического синтеза Академии наук СССР

Заявитель

СПОСОБ ВЫДЕЛЕНИЯ АЗОТИСТЫХ ОСНОВАНИЙ ИЗ НЕФТЕЙ, НЕФТЯНЫХ ДИСТИЛЛЯТОВ И НЕФТЯНЫХ ОСТАТКОВ Предмет изобретения

Известен способ выделения азотистых оснований из нефтяных дистиллятов путем сорбции на сульфокислотном катионите с добавкой метанола. При этом катпопит сорбирует до

40 % азотистых оснований.

Предлагаемый способ выделения азотистых оснований основан на сорбции их крупнопористыми сульфокислотными катионитами марки КУ-23 из раствора, содержащего в качестве добавки полярный растворитель — уксусный ангидрид или диметилформамид. Десорбцию оснований проводят спиртовым раствором аммиака. Применение крупнопористого катионита в сочетании с полярным растворителем дает возможность количественно выделять азотистые основания из сырых нефтей, дистиллятов и нефтяных остатков. Способ прост, позволяет извлекать 95 — 100 % азотистых оснований. После десорбции оснований катионит регенерируют обычным способом.

Пример 1. 300 г нефти, содержащей

0,028 % основного азота, разбавляют бензолом или бензином в отношении 1:4 по объему, добавляют 75 лл уксусного ангидрида (на

100 г нефти 25 ил уксусного ангидрида) и

60 г катионита КУ-23 (на 100 г нефти 20 г катионита). Раствор перемешивают в течение

14 час и катионит.отфильтровывают. При этом в нефти остается 0,002 % основного азота, т. е.

95 % оснований сорбируется катиоиитом.

Катионит 2 — 3 раза при перемешивании промывают ацетоном, ацетон отсасывают, а остатки его удаляют, промывая катионит этанолом до отрицательной реакции с нитропруссидом натрия. Затем катионит заливают этанолом и при охлаждении в ледяной бане раствор насыщают сухим аммиаком. Катионит в аммиачном растворе оставляют на 10—

12 час, отфильтровывают и экстрагируют го10 рячим бензолом до получения бесцветного раствора. Спиртовую и бензольные вытяжки объединяют и растворитель отго няют. Получают 2,6 г концентрата с содержанием основного азота 3,2 %.

15 Выход 95 %, считая на основной азот нефI è и 100 %, считая на сорбированный азот.

Пример 2. 200 г масляного гудрона, содержащего 0,120 % основного азота, растворяют в 800 ял бензола, добавляют 40 г кати20 онита КУ-23 и 50,ил уксусного ангидрида.

Далее сорбцию и десорбцию оснований ведут по примеру 1. Выделяют 11,0 г концентрата с содержанием основного азота 2,18 %, Выход

100 %.

Способ выделения азотистых оснований из

30 нефтей, нефтяных дистиллятов и нефтяных

210308

Составитель Н. С. Гозалова

Редактор Л. К. Ушакова Техред Л. Я. Бриккер Корректоры: А. П. Васильева и В. В. Крылова

Заказ 571/4 Тираж 530 Подписное

ЦИИИПИ Комитета по делам изобретений и открытий при Совете Министров СССР

Москва, Центр, пр. Серова, д. 4

Типография, пр. Сапунова, 2 остатков путем сорбции на сульфокислотном катионите с применением полярного растворителя, отличающийся тем, что, с целью более полного выделения азотистых оснований, в качестве полярного растворителя применяют уксусный ангидрид или диметилформамид.

  

www.findpatent.ru