Закон Дарси Вывод формулы Дюпюи Газпром нефть 1. Закон дюпюи нефть


Закон Дарси Вывод формулы Дюпюи Газпром нефть 1

Закон Дарси. Вывод формулы Дюпюи Газпром нефть 1

Введение Проницаемость – это способность пористого материала пропускать флюиды через связанные поры породы Газпром нефть 2

Закон Дарси Линейная форма закона Дарси выглядит следующим образом: Градиент давления отрицателен, если движение флюида происходит в положительном x -направлении Газпром нефть 3

Закон Дарси Допустим, что скорость потока, площадь поперечного сечения, вязкость и проницаемость являются постоянными: Это уравнение регулярно используется при экспериментальных вычислениях k в контрольных исследованиях при идеальных условиях Интегральные формы закона Дарси можно использовать для описания систем с неоднородной проницаемостью. Например, закон дарси может быть адаптирован к случаям, когда проницаемость изменяется поперечно или в направлении движения флюидов (также к системе из серии последовательных пропластков или параллельных слоев) Газпром нефть 4

Закон Дарси используется для определения проницаемости k, которая остается постоянной при условии: • Линейно-ламинарного и однофазного (насыщенность – 100%) течения; • Отсутствия химического взаимодействия между породой и пластовым флюидом; • Несжимаемая жидкость Газпром нефть 5

Формула Дюпюи Газпром нефть 6

Формула Дюпюи Газпром нефть 7

Упражнения Газпром нефть 8

Упражнения Газпром нефть 9

present5.com

ДВИЖЕНИЕ ЖИДКОСТИ И ГАЗА В СИСТЕМЕ «ПЛАСТ

 

Закон Дарси

Движение жидкости и газа на конкретном участке пористой среды происходит под действием градиента давления. Согласно закону Дарси скорость v движения (фильтрации) жидкости (газа) в пористой среде прямо пропорциональна градиенту давления grad р, т.е. перепаду давления р, приходящемуся на единицу длины пути движения жидкости или газа и направлена в сторону падения давления:

 

 

В этой форме записи закона Дарси коэффициент пропорциональности равен подвижности жидкости, т.е. отношению проницаемости k породы к вязкости жидкости m.

Скорость фильтрации определяется отношением расхода жидкости w, протекающей через образец породы, к площади поперечного сечения образца S, расположенного перпендикулярно к направлению потока:

 

.

 

Принимая градиент давления на образце породы длиной L величиной постоянной

 

,

 

закон Дарси обычно записывают в виде формулы:

 

.

 

Истинная скорость движения жидкости в пористой среде больше скорости фильтрации, так как на самом деле жидкость движется не по всему сечению образца, а лишь по поровым каналам, суммарная площадь которых S1 меньше общей площади образца S:

 

 

Здесь mдин – динамическая пористость образца породы.

Очевидно, что

 

 

т.е. истинная скорость движения жидкости в пористой среде равна отношению скорости фильтрации к динамической пористости коллектора.

При фильтрации через пористую среду газа его объемный расход по длине образца изменяется в связи с уменьшением давления. Среднее давление по длине образца пористой породы принимают равным:

 

 

где р1 и р2 – соответственно давление газа на границах образца.

Средний объемный расход газа wг при его изотермическом расширении по длине образца можно оценить по формуле, вытекающей из закона Бойля-Мариотта для идеальных газов:

 

 

где w0 – расход газа при атмосферном давлении рат.

Закон Дарси при фильтрации газа записывается в виде формулы:

 

 

Здесь mг – вязкость газа.

Закон Дарси – основной закон подземной гидродинамики – науки, на которой базируются методы проектирования и контроля процессов разработки нефтяных и газовых месторождений и методы промысловых исследований скважин и пластов.

 

Производительность скважин.

Формула Дюпюи.

Производительность добывающих нефтяных и газовых скважин характеризуется их дебитом, то есть количеством жидкости или газа, поступающим из них в единицу времени. По формулам Дарси можно рассчитать скорость фильтрации нефти и газа при установившемся плоскопараллельном фильтрационном потоке, когда все частички жидкости (газа) движутся по прямолинейным параллельным траекториям, например, в трубе.

Фильтрация жидкости или газа по пласту в районе расположения скважины в большинстве случаев имеет радиальный или близкий к нему характер; траектории частиц (линии тока) направлены по радиусам окружности, центр которой совпадает с центром скважины (рис. 1.15). Жидкость или газ движутся через ряд концентрически расположенных цилиндрических поверхностей, площадь которых по мере приближения к скважине непрерывно уменьшается.

Если кровля и подошва продуктивного пласта непроницаемы, толщина его постоянна и строение однородно, скорость фильтрации при постоянном расходе жидкости или газа непрерывно возрастает, достигая максимального значения на стенках скважины. Для оценки притока жидкости или газа к отдельным скважинам в этом случае применяют формулы, выведенные на основе закона Дарси для плоскорадиального фильтрационного потока.

При установившемся режиме радиальной фильтрации однородной жидкости для оценки дебита нефтяной скважины применяют формулу Дюпюи:

 

(1.28)

 

где wпл - объемный дебит в пластовых условиях, см3/с; p - постоянная величина, равная 3,1415..., k - проницаемость, мкм2; h - толщина пласта, м; р1 - давление на круговом контуре, имеющем радиус R1, МПа; р2 - давление на стенке скважины, МПа; rс - радиус скважины; m - вязкость жидкости, мПа×с; символ ln - обозначение натурального логарифма, имеющего основание число е = 2,71828... Связь между натуральными и десятичными логарифмами какого-либо числа выражается соотношением In x = 2,3lg x. Поскольку в формулу Дюпюи входит отношение величин R1 и rс, то их можно выразить в любой размерности, одинаковой для R1 и rс. Коэффициент 103 определяется выбором указанных размерностей.

Для расчета объемного дебита скважин по формуле Дюпюи принимают, что давление на стенке скважины равно измеренному забойному давлению р2 = рзаб, а давление на круговом контуре радиусом R1 равно пластовому р1 = рпл. Учитывая, что при эксплуатации нескольких скважин максимальное давление в пласте имеем примерно в средних точках расстояний между соседними скважинами, принимают R1 = sср (sср - половина среднего расстояния между данной скважиной и соседними). Тогда формулу Дюпюи записывают в следующем виде:

 

(1.29)

 

Ошибки в определении sср вследствие того, что величина входит под знак логарифма, практически несущественно влияет на точность установления объемного дебита wпл.

Объемный и массовый дебиты скважины, измеренные на поверхности, связаны с объемным дебитом в пластовых условиях следующими соотношениями:

 

 

Здесь b - объемный коэффициент нефти; r - плотность нефти на поверхности.

Для притока газа формула Дюпюи имеет тот же вид, что и для жидкости:

 

 

где wг – объемный дебит скважины при давлении

 

;

 

mг – вязкость газа в пластовых условиях.

Для приведения wг к атмосферному давлению рат при пластовой температуре пользуются формулой:

 

(1.30)

 

где wг – объемный дебит газовой скважины, см3/с; z – коэффициент сверхсжимаемости газа при пластовой температуре Тпл.

На практике принято дебит газовых скважин измерять в тыс. м3/сут. и приводить его к стандартной температуре (Тст = 293 К) и атмосферному давлению (0,1 МПа):

 

где Тпл - пластовая температура газа; множитель 11,57 = 106 : 86400 (106 - количество см3/в 1 м3; 86400 – время (секунды в сутках).

Приведенные формулы Дюпюи можно использовать для расчета дебита гидродинамически совершенных скважин, стенки которых имеют форму цилиндра с радиусом rс и высотой h. Причем фильтрация жидкости или газа происходит по всей поверхности этого цилиндра, исключая площадь основания. Для гидродинамически несовершенных скважин радиальный характер линий тока в непосредственной близости от забоя нарушается, и рассчитанный по формуле Дюпюи дебит будет отличаться от действительного дебита скважины. Коэффициент совершенства скважины численно равен отношению дебита несовершенной скважины wн.с. к дебиту w, который имела бы при том же перепаде давления рпл - рзаб совершенная скважина того же радиуса

 

 

Для реальных скважин a изменяется в довольно широком диапазоне – от 0,15 до 1 и выше (например, при применении пескоструйной перфорации, торпедировании и т. п.).

 

ВИДЫ РЕМОНТОВ НЕФТЯНЫХ

И ГАЗОВЫХ СКВАЖИН

В соответствии с «Правилами ведения ремонтных работ в скважинах» (РД 153-39-023-97) составлен классификатор ремонтных работ в скважинах. Он систематизирует планирование и учет всех ремонтных работ в скважинах нефтяной промышленности по их назначению, основным видам, категориям скважин, способу проведения и отражает современный уровень развития этих работ.

 

Общие положения

1.1. Видами ремонтных работ различного назначения являются:

· Капитальный ремонт скважин;

· Текущий ремонт скважин;

· Скважино-операциия по повышению нефтеотдачи пластов и производительности скважины.

1.2. Капитальным ремонтом скважин (КРС)называется комплекс работ по восстановлению работоспособности скважин и продуктивного пласта различными технологическими операциями, а именно:

- восстановление технических характеристик обсадных колонн, цементированного кольца, призабойной зоны, интервала перфорации;

- ликвидация аварий;

- спуск и подъём оборудования для раздельной эксплуатации и закачки различных агентов в пласт;

- воздействие на продуктивный пласт физическими, химическими, биохимическими и другими методами;

- зарезка боковых стволов и продавка горизонтальных участков в продуктивном пласте;

- изоляция одних и приобщение других горизонтов;

- исследование скважины;

- ликвидация скважины.

1.3. Текущим ремонтом скважин (ТРС)называется комплекс работ, направленных на восстановление работоспособности внутрискважинного оборудования и работ по изменению режима и способа эксплуатации скважины.

1.4. Скважино-операцией ремонтных работ по повышению нефтеотдачи пластов и интенсификации добычи нефтиявляется комплекс работ осуществления технологических процессов по воздействию на пласт и прискважинную зону физическими, химическими или биохимическими и гидродинамическими методами, направленными на повышение коэффициента конечного нефтеизвлечения на данном участке залежи.

1.5. Единицей ремонтных работ перечисленных направлений (ремонт, скважино-операция) является комплекс подготовительных, основных и заключительных работ, проведенных бригадой текущего, капитального ремонта скважин или звеном по интенсификации или другими специализированными организациями от передачи им скважины заказчиком до окончания работ, предусмотренных планом и принимаемых по акту.

1.5.1. Если после окончания работ скважина не отработала 48 часов гарантированного срока или не вышла на установленный режим в связи с некачественным проведением работ запланированного комплекса по вине бригады КРС или звена по интенсификации, то не зависимо от того, какая бригада будет осуществлять дополнительные работы на скважине, считать их продолжением выполненных работ без оформления на них второго ремонта или скважино-операции.

1.6. Ремонтные работы в скважинах в отрасли проводятся тремя основными способами доставки к заданной зоне ствола инструмента, технологических материалов (реагентов) или приборов:

1) с помощью специально спускаемой колонны труб;

2) путём закачивания по НКТ или межтрубному пространству;

3) на кабеле или на канате.

Планирование и учет по каждому виду ремонта отдельной строкой, обозначая каждый из них соответствующим индексом:

КР1-2 – отключение отдельных пластов с установкой подъёмника;

КР1-2/БПГ – отключение отдельных пластов закачкой тампонажных материалов с устья без установки подъёмника (гидравлический способ)

КР1-2/БПК – отключение отдельных пластов спуском инструмента на тросе или кабеле без установки подъёмной мачты через стационарно спущенный лифт (канатно-кабельный способ).

1.7. Комплекс технологических работ, включающий в себя несколько видов ремонтов, считается одним скважино-ремонтом и обозначается в графе 1 формы учета суммой их шифров.

Все виды капитального и текущего ремонтов, в пределах одного скважино-ремонта, включается в форму учёта капитального ремонта скважины по схеме:

ТР4-1 (смена насоса) + ТР4-6 (опрессовка НКТ) + ТР4-7 (пропарка НКТ).

 

Принятые сокращения

КР – капитальный ремонт;

ТР – текущий ремонт;

ПНП – повышение нефти отдачи пластов;

НКТ – насосно-компрессорные трубы;

УЭЦН – установка погружного центробежного электронасоса;

УЭДН – установка погружного электродиафрагменного насоса;

УЭВН – установка погружного электровинтового насоса;

ШГН – штанговый глубинный насос;

УШВН – установка штангового винтового насоса;

ГПН – гидропоршевый насос;

ПАВ – поверхностно-активное вещество;

ГПП – гидропескоструйная перфорация;

ГРП – гидроразрыв пласта;

ГГРП – глубокопроникающий гидравлический разрыв пласта;

ОРЗ – оборудование раздельной закачки;

ОРЭ –оборудование раздельной эксплуатации;

ВС – вертикальная скважина;

НС – наклонная скважина;

ГС – горизонтальная скважина;

ПЗП – призабойная зона пласта;

КЗП – комплект защиты пласта;

ОПЗ – обработка призабойной зоны пласта;

ВИР – водоизоляционные работы;

ИПТ – испытатели пластов;

КИИ – комплекс испытательных инструментов;

БПГ – без подъёмника гидравлическим способом;

БПК – без подъёмника канатно-кабельным способом.

 

 

Виды ремонтов

Капитальный ремонт скважин

К капитальным ремонтам скважин относятся работы, представленные в табл. 1.4.

Таблица 1.4.

 



infopedia.su

Производительность скважин.

⇐ ПредыдущаяСтр 12 из 165Следующая ⇒

Формула Дюпюи.

Производительность добывающих нефтяных и газовых скважин характеризуется их дебитом, то есть количеством жидкости или газа, поступающим из них в единицу времени. По формулам Дарси можно рассчитать скорость фильтрации нефти и газа при установившемся плоскопараллельном фильтрационном потоке, когда все частички жидкости (газа) движутся по прямолинейным параллельным траекториям, например, в трубе.

Фильтрация жидкости или газа по пласту в районе расположения скважины в большинстве случаев имеет радиальный или близкий к нему характер; траектории частиц (линии тока) направлены по радиусам окружности, центр которой совпадает с центром скважины (рис. 1.15). Жидкость или газ движутся через ряд концентрически расположенных цилиндрических поверхностей, площадь которых по мере приближения к скважине непрерывно уменьшается.

Если кровля и подошва продуктивного пласта непроницаемы, толщина его постоянна и строение однородно, скорость фильтрации при постоянном расходе жидкости или газа непрерывно возрастает, достигая максимального значения на стенках скважины. Для оценки притока жидкости или газа к отдельным скважинам в этом случае применяют формулы, выведенные на основе закона Дарси для плоскорадиального фильтрационного потока.

При установившемся режиме радиальной фильтрации однородной жидкости для оценки дебита нефтяной скважины применяют формулу Дюпюи:

 

(1.28)

 

где wпл - объемный дебит в пластовых условиях, см3/с; p - постоянная величина, равная 3,1415..., k - проницаемость, мкм2; h - толщина пласта, м; р1 - давление на круговом контуре, имеющем радиус R1, МПа; р2 - давление на стенке скважины, МПа; rс - радиус скважины; m - вязкость жидкости, мПа×с; символ ln - обозначение натурального логарифма, имеющего основание число е = 2,71828... Связь между натуральными и десятичными логарифмами какого-либо числа выражается соотношением In x = 2,3lg x. Поскольку в формулу Дюпюи входит отношение величин R1 и rс, то их можно выразить в любой размерности, одинаковой для R1 и rс. Коэффициент 103 определяется выбором указанных размерностей.

Для расчета объемного дебита скважин по формуле Дюпюи принимают, что давление на стенке скважины равно измеренному забойному давлению р2 = рзаб, а давление на круговом контуре радиусом R1 равно пластовому р1 = рпл. Учитывая, что при эксплуатации нескольких скважин максимальное давление в пласте имеем примерно в средних точках расстояний между соседними скважинами, принимают R1 = sср (sср - половина среднего расстояния между данной скважиной и соседними). Тогда формулу Дюпюи записывают в следующем виде:

 

(1.29)

 

Ошибки в определении sср вследствие того, что величина входит под знак логарифма, практически несущественно влияет на точность установления объемного дебита wпл.

Объемный и массовый дебиты скважины, измеренные на поверхности, связаны с объемным дебитом в пластовых условиях следующими соотношениями:

 

 

Здесь b - объемный коэффициент нефти; r - плотность нефти на поверхности.

Для притока газа формула Дюпюи имеет тот же вид, что и для жидкости:

 

 

где wг – объемный дебит скважины при давлении

 

;

 

mг – вязкость газа в пластовых условиях.

Для приведения wг к атмосферному давлению рат при пластовой температуре пользуются формулой:

 

(1.30)

 

где wг – объемный дебит газовой скважины, см3/с; z – коэффициент сверхсжимаемости газа при пластовой температуре Тпл.

На практике принято дебит газовых скважин измерять в тыс. м3/сут. и приводить его к стандартной температуре (Тст = 293 К) и атмосферному давлению (0,1 МПа):

 

где Тпл - пластовая температура газа; множитель 11,57 = 106 : 86400 (106 - количество см3/в 1 м3; 86400 – время (секунды в сутках).

Приведенные формулы Дюпюи можно использовать для расчета дебита гидродинамически совершенных скважин, стенки которых имеют форму цилиндра с радиусом rс и высотой h. Причем фильтрация жидкости или газа происходит по всей поверхности этого цилиндра, исключая площадь основания. Для гидродинамически несовершенных скважин радиальный характер линий тока в непосредственной близости от забоя нарушается, и рассчитанный по формуле Дюпюи дебит будет отличаться от действительного дебита скважины. Коэффициент совершенства скважины численно равен отношению дебита несовершенной скважины wн.с. к дебиту w, который имела бы при том же перепаде давления рпл - рзаб совершенная скважина того же радиуса

 

 

Для реальных скважин a изменяется в довольно широком диапазоне – от 0,15 до 1 и выше (например, при применении пескоструйной перфорации, торпедировании и т. п.).

 

mykonspekts.ru

Формула Дарси, Дюпюи, область применения.

Поиск Лекций

Формула Дарси:

где Кф – коэф. фильтрации – зависит как от природы пористой среды, так и от св-в фильтрующейся жидкости. Имеет размерность скорости и хар-ет скорость потока через единицу площади сечения, перпендикулярного к потоку, под действием единичного градиента напора. Применяется только для однородной ж-ти.

Для разработки месторождений наибольшее значение имеет плоскорадиальный тип течения (приток к скважине). Формула Дюпии:

где К – коэф проницаемости, который не зависит от св-в ж-ти и является динамической хар-кой только пористой среды. Размерность или 1 Д (Дарси) =1,02* .

Коэф фильтрации и проницаемости связаны м/ду собой соотношением:

Анализ:

Дебит не зависит от r, а только от депрессии . График зависимости Qот (Рис.3.4) называется индикаторной диаграммой, а сама зависимость - индикаторной. Отношение дебита к депрессии называется коэффициентом продуктивности скважины

. 3.28

 

 

2. Градиент давления и скорость обратно пропорциональны расстоянию (рис.3.5) и образуют гиперболу с резким возрастанием значений при приближении к забою.

3. Графиком зависимости р=р( r ) является логарифмическая кривая (рис.3.6), вращением которой вокруг оси скважины образуется поверхность, называемая воронкой депрессии. Отсюда, основное влияние на дебит оказывает состояние призабойной зоны, что и обеспечивает эффективность методов интенсификации притока.

4. Изобары - концентрические, цилиндрические поверхности, ортогональные траекториям.

Дебит слабо зависит от величины радиуса контура rкдля достаточно больших значений rк /rc, т.к. rк /rc входят в формулу под знаком логарифма.

По индикаторным диаграммам зависимости дебита от депрессии находят:

1. установившееся или неустановившееся движение флюида

2. коэффициент продуктивности

Билет №7

1. Глушение скважин, технология, область применения.

Под глушением скважины понимается комплекс работ по замене скважинной жидкости на жидкость глушения, направленных на прекращение притока жидкости из пласта. При глушении скважины основной задачей является выбор жидкости глушения и ее физические и химические параметры.

Ж-ть глушения кроме необходимой плотности должна быть однородной и соответствующей вязкости не должна снижать проницаемость ПЗП, не должна оказывать корроз-го и абразивного действия на ремонтно – экспл-е об-вание, не вступать в хим.реакцию с породой пласта и образовывать твердые осадки, не замерзать зимой, не быть токсичной, взрыва – пожрано опасной, дорогой и диф – ной, должна сохранять коллекторские свойства продуктивного пласта с целью последующего быстрого освоения. Используются пластовая вода, водный р-р хлористого кальция и глинистый р-р(для глушения скв с высоким Рпл. + низкие ФЕС,+ ограниченное коррозионное воздействие на металл, +отсутствие хим.взаимодействия с породой пласта. К недостаткам: -наличие мех. образованных примесей; -повышенная вязкость, -способность легко насыщаться газом и плохо дегазироваться, -замерзание при низких т-турах). Основными компонентами жидкости глушения являются:

- соли – для снижения интенсивности набухания глин; - полимеры и гидрофобизирующие ПАВ – повышение вязкости и снижение фазовой проницаемости по воде для предотвращения поглощения жидкости; - твердая дисперсная кислоторастворимая фаза (напр. Мел)– тоже, только для высокопроницаемых коллекторов; - ингибиторы коррозии и ингибиторы солеотложения.

Плотность ж-ти глушения (для Рзаб> Рплна 5-10% ): r=(Рпл+(3…5)*105/Н. где Рпл пластовое давление, (3..5) противодействие на пласт, Н – расстояние от устья до продуктивного пласта по вертикали.

Ж-ти для глушения скв на водной основе оказывают блокирующее действие на пласт, что приводит к увеличению сроков освоения скв и падению темпов добычи нефти. Сохранение колекторских св-в пласта при глушении скв. может быть обеспечено использованием в качестве ж-ти глушения гидрофобно – эмульсионных р-ров т.е на р-рах обратной эмульсии.

Глушение скважин может производиться прямым и обратным способом. При прямом способе, жидкость глушения закачивается через НКТ, при обратном - в затрубное пространство.

Процесс глушения (в пределах одного цикла) должен быть непрерывным.

Глушение применяют для проведения ремонтных работ в скв, для их консервации и ликвидации. Фонтанные скв глушат за один цикл. Подают в затрубье ж-ть глушения. Насосные – 2 цикла. Первый цикл – рассчитывают ж-ть глушения по плотности, затем прокачивают ч/з ОК. При появлении ж-ти глушения на устье скв закрывают на 4 часа. После 4 часов также закачивают ж-ть глушения. Должен быть запас 3-4 м3 ж-ти глушения, т.к. при поднятии насоса из скв высвобождается занимаемый им объем.

Признаком окончания глушения скважины является соответствие плотности жидкости, выходящей из скважины плотности жидкости глушения, при этом объем прокаченной жидкости глушения должен быть не менее расчетной величины

2. Схема герметизированной системы сбора нефти, газа и воды на морских месторождениях, расположенных вдали от берега.

Сущность разработки и эксплуатации морских мест-й эстакадным способом заключается в том, что на разведанной залежи сооружают металлические или железобетонные эстакады с прилегающим им площадками для бурения и эксплуатации скважин сбора и подготовки скважин. Продукции, а также другие производственные объекты. Эстакады бывают 2-х типов:

-прибрежные расположенные вблизи берега и имеющие с ним подводную связь.

-открытые морские эстакады расположенные вдали от берега.

1-технолог площадки, 2- эстакады, 3-добыв скв, 4-выкидные линиии, 5 Автомат понижающий устьевое давление (АПУД) разделяет газ от жидкости, 6-ДНС,7-компрессорная станция, 8-УПН, 9-подводные газовые коллекторы, 10-подвод тр-ды для транспорт-ки газа на берег, 11- --товар нефти на берег , 13- техническая площадка, 14-подводный нефтепровод, 15-подводный газопровод.

poisk-ru.ru

Продуктивность (нефтедобыча) — WiKi

Продуктивность по нефти

Коэффициент продуктивности определяется по результатам гидродинамических исследований и эксплуатации скважин.

Используя замеры на квазистационарных режимах (установившихся отборах), получают индикаторные диаграммы (ИД), представляющие собой зависимость дебита от депрессии или забойного давления. По наклону индикаторной линии определяют фактическую продуктивность нефтяной скважины.

Продуктивность по газу

Уравнение Дюпюи

Уравнение Дюпюи является интегральной формой закона Дарси для случая плоскорадиального установившегося потока несжимаемой жидкости к вертикальной скважине. Уравнение Дюпюи связывает продуктивные характеристики скважины (дебит, продуктивность) и фильтрационные свойств пласта (гидропроводность, проницаемость).

Потенциальная продуктивность и гидропроводность

По уравнению Дюпюи потенциальная продуктивность скважины связана с гидропроводностью выражением:η0=khμB∗2πln(Rkrc){\displaystyle \eta _{0}={\frac {kh}{\mu B}}*{\frac {2\pi }{\mathrm {ln} \left({\frac {R_{k}}{r_{c}}}\right)}}} где η0{\displaystyle \eta _{0}}  — потенциальная продуктивность [см3/сек/атм], которая может быть получена от совершенной скважины (при отсутствии скин-фактора),khμ{\displaystyle {\frac {kh}{\mu }}}  — коэффициент гидропроводности пласта (k{\displaystyle k}  — проницаемость горной породы [Д], h{\displaystyle h}  — эффективная толщина коллектора [см], μ{\displaystyle \mu }  - динамическая вязкость жидкости [сП]),B{\displaystyle B}  — коэффициент объёмного расширения (для пересчёта объёма жидкости из поверхностных в пластовые условия),Rk{\displaystyle R_{k}}  — радиус контура питания (воронки депрессии) [см], то есть расстояние от скважины до зоны пласта, где давление полагается постоянным и равным текущему пластовому давлению (примерно половина расстояния между скважинами),rc{\displaystyle r_{c}}  — радиус скважины по долоту в интервале вскрытия пласта [см].

Фактическая продуктивность несовершенной скважины

Для несовершенной скважины уравнение Дюпюи принимает следующий вид:η=khμB∗2πln(Rkrc)+S{\displaystyle \eta ={\frac {kh}{\mu B}}*{\frac {2\pi }{\mathrm {ln} \left({\frac {R_{k}}{r_{c}}}\right)+S}}} где η{\displaystyle \eta }  — фактическая продуктивность несовершенной скважины, S{\displaystyle S}  — скин-фактор.

Литература

  • Справочная книга по добыче нефти под редакцией Ш. Г. Гиматудинова, 1974.
  • Мищенко И.Т. Скважинная добыча нефти. М: Нефть и газ, 2003.

ru-wiki.org

Оптимальный и потенциальный дебиты скважин

УСЛОВИЯ ПРИТОКА ЖИДКОСТИ И ГАЗОВ К СКВАЖИНАМ

Приток жидкости к скважине

При эксплуатации скважины движение пластовой жидкости осуществляется в трех системах пласт-скважина-коллектор, которые действуют независимо друг от друга, при этом взаи­мосвязаны между собой.

 

 

Рис. 1.1. Схема добычи нефти из пласта.

Приток жидкости в скважины происходит под действием разницы между пластовым давлением и давлением на забое скважины. Разность между пластовым и забойным давлением называется депрессией на пласт.

Р = Рпл - Рзаб (1.1)

Так как движение жидкости в пласте происходит с весьма малыми скоростями, то оно подчиняется линейному закону фильтрации - закону Дарси. При постоянной толщине пла­ста и открытом забое скважины жидкость движется к забою по радиально-сходящимся направлениям. В таком случае говорят о плоскорадиальной форме потока. Если скважина достаточно продолжительно работает при постоянном забойном давлении, то скорость фильтрации и давление во всех точках пласта перестают изменяться во времени и поток является установившимся.

Рассмотрим задачу притока жидкости в скважину в круго­вом пласте, схема которого представлена на рис. 1.2.

 

Рис. 1.2. К выводу уравнения Дюпюи

Для решения задачи введем следующие допущения:

1. Пласт круговой, в центре которого расположена един­ственная совершенная скважина.

2. Пласт однородный и изотропный постоянной толщины.

3. Процесс течения флюида изотермический = const).

4. Движение жидкости плоскорадиальное и соответствует закону Дарси.

5. В процессе фильтрации отсутствуют любые физические и химические реакции.

Запишем уравнение Дарси:

(1.2)

где Q — объемный расход жидкости, м3/с; F — поверхность фильтрации, м2;

— перепад давлений, Па;

— вязкость флюида, Па с;

l — путь течения флюида, м;

к — коэффициент пропорциональности, который учитывает не только среду в которой осуществляется фильтрация, но и все процессы взаимодействия между фильтрующимся флюидом и твердой поверхностью среды, м2.

Для схемы рис. 1.2 обозначим:

Rk — радиус контура питания (равен половине расстояния между двумя соседними скважинами), м;

rс— радиус скважины, м;

h — толщина пласта, м;

Рк— давление на контуре питания, Па;

Рзаб — давление на забое скважины, Па.

Выделим мысленно (рис. 1.2) на расстоянии г от оси сква­жины элемент пласта толщиной dr. Перепад давлений на этом элементе обозначим через dP. Поверхность фильтрации для выделенного элемента такова:

Запишем уравнение Дарси для рассматриваемой схемы:

 

После разделения переменных получим:

 

Пределами интегрирования для уравнения (1.3) являются: по P:от Рk до Рзаб; по r. от Rкдо гс.

Таким образом, имеем:

После интегрирования получаем:

 

Уравнение (1.5) называется уравнением Дюпюи и описы­вает приток жидкости в скважину для схемы на рис. 1.3 при принятых допущениях.

Как видно из (1.5), распределение давления в пласте во­круг работающей скважины является логарифмическим, что представлено на рис. 1.3.

 

Рис. 1.3. Распределение давления в пласте вокруг работающей скважины

Давление на контуре питания Ркявляется пластовым статическим давлением Pплст, в дальнейшем просто Рпл (Рплст — статическое пластовое давление — давление, которое суще­ствует в системе до момента отбора продукции, т.е. когда Q = 0). Давление вокруг работающей скважины в любой точке пласта (между давлением на забое скважины и давлением на контуре питания) называется динамическим пластовым давлением Рплдин. Динамическое пластовое давление на стенке скважины будем называть забойным давлением Рза6.

1.2. Виды гидродинамического несовершен­ства скважин

Процесс течения продукции в пористой среде сопровожда­ется определенными фильтрационными сопротивлениями. В призабойной зоне скважины возникают дополнительные филь­трационные сопротивления, связанные, во-первых, с наличием самой скважины и, во-вторых, с конкретным ее исполнением.

Для сравнения скважин между собой и оценки каждой конкретной скважины вводятся понятия гидродинамически совершенной скважины и гидродинамически несовершенных скважин.

На рис. 1.4 приведены схемы гидродинамически совершен­ной и гидродинамически несовершенных скважин.

 

Рис. 1.4. Схемы гидроди­намически совершенной (а) и гидродинамически несовершенных сква­жин:

б - по степени вскрытия; в - по характеру вскры­тия;

г - по степени и характеру вскрытия:

1 - обсадная колонна;

2 - цементный камень;

3 - перфорационное от­верстие;

4-перфорационный канал Под гидродинамически совершенной будем понимать такую скважину, которая вскрыла продуктивный горизонт на всю его толщину h и в которой отсутствуют любые элементы крепи (обсадная колонна, цементный камень, забойные устройства), т.е. скважина с открытым забоем. При течении продукции в такую скважину фильтрационные сопротивления обусловлены только характеристикой продуктивного горизонта и являются минимально возможными (рис. 1.4 а). Большинство реальных скважин относятся к гидродинамически несовершенным. Среди гидродинамически несовершенных скважин выделяют:

1. Несовершенные по степени вскрытия (рис. 1.4 б).

Несовершенными по степени вскрытия называются сква­жины, которые вскрывают продуктивный горизонт не на всю толщину.

2. Несовершенные по характеру вскрытия (рис. 1.4 в).

Несовершенными по характеру вскрытия называются сква­жины, которые вскрывают пласт на всю толщину, но скважина обсажена и проперфорирована.

3. Несовершенные по степени и характеру вскрытия (рис. 1.4 г).

Несовершенными по степени и характеру вскрытия называ­ются скважины, которые вскрывают продуктивный горизонт не на всю толщину и скважина обсажена и проперфорирована.

При расчете дебита скважин их гидродинамическое несо­вершенство учитывается введением в формулу Дюпюи коэффи­циента дополнительных фильтрационных сопротивлений С:

 

Величина коэффициента дополнительных фильтрационных сопротивлений зависит от степени вскрытия пласта, плотности перфорации, длины и диаметра перфорационных каналов.

Коэффициент дополнительных фильтрационных сопро­тивлений можно представить в виде:

С = С1+ С2(1.7)

где С1- коэффициент, учитывающий несовершенство скважины по степени вскрытия. Этот коэффициент учитывает возрастание фильтрационных сопротивлений за счет изменения геометрии течения жидкости. Он будет зависеть от толщины продуктивного пласта h, диаметра скважины по долоту Dc и от относительного вскрытия пласта 8. Коэффициент С1определя­ется по специальным графикам.

 

где b - часть толщины продуктивного горизонта, вскрытого скважиной.

С2- коэффициент, учитывающий несовершенство скважи­ны по характеру вскрытия. Дополнительные фильтрационные сопротивления для таких скважин связаны с изменением геометрии течения продукции вследствие наличия перфора­ционных отверстий и каналов. Он будет зависеть от плотности перфорации (количества отверстий) на один погонный метр п; средней длины перфорационного канала l; диаметра перфо­рационного канала d. Коэффициент С2также определяется по специальным графикам.

 

1.3. Коэффициент гидродинамического совер­шенства скважины

Любое гидродинамическое несовершенство скважины при­водит к снижению дебита. В общем случае дебит несовершенной скважины Qhcзаписывается в виде:

 

 

Коэффициентом гидродинамического совершенства сква­жины ф называется отношение дебита несовершенной скважи­ны Qhcк дебиту совершенной скважины Qc, вычисляемому по формуле (1.5).

 

 

Учет гидродинамического несовершенства скважины может быть выполнен с использованием понятия приведенного радиу­са скважины rпр. Приведенный радиус скважины - это радиус такой фиктивной совершенной скважины Qфс , дебит которой равен дебиту реальной несовершенной скважины Qрс. Для со­вершенной скважины rпр=rс, для несовершенных rпр <rс.

Формулу (1.6) можно представить с использованием по­нятия приведенного радиуса скважины rспр:

 

Численная величина приведенного радиуса скважины мо­жет быть определена по результатам исследования скважины на нестационарном режиме.

В настоящее время гидродинамическое совершенство скважин рассчитывается по результатам экспериментального определения приведенного радиуса rпр, что существенно повы­шает точность, так как отпадает необходимость определения С1и С2по специальным графикам при заведомо недостоверной информации.

 

Оптимальный и потенциальный дебиты скважин

Один из важнейших вопросов в добыче нефти и газа - уста­новление обоснованной величины отбора нефти (газа) как из отдельных скважин, так и из залежи в целом. При прочих равных условиях максимальный дебит скважины можно по­лучить при максимальной депрессии на пласт. Очевидно, что максимальная депрессия будет при Рзаб=0. Дебит скважины, получаемый при максимальной депрессии, называется потенциальным дебитом.

Однако далеко не во всех скважинах можно добывать нефть (газ) при потенциальном дебите. Чаще всего задолго до насту­пления максимальной депрессии эксплуатационная обсадная колонна может быть смята внешним давлением. Возможно так­же интенсивное разрушение горной породы, слагающей пласт, при увеличении на него депрессии. Кроме того, при максимальной депрессии нерационально расходуется пластовая энергия вследствие бурного выделения из нефти растворенного газа и проскальзывания его в скважину без дополнительных работ по вытеснению нефти.

По указанным и некоторым другим причинам приходится ограничивать отбор жидкости (газа) из пласта, чтобы получить из пласта наибольшую нефтеотдачу, а сам процесс добычи про­текал бесперебойно, скважины не выходили из строя вслед­ствие чрезмерного отбора флюидов.

Следовательно, для каждой скважины в зависимости от условий эксплуатации, которые могут изменяться, существует какой-то оптимальный отбор жидкости. Величина оптималь­ного отбора и является максимальным дебитом для скважины, при котором учитываются геолого-технические и экономиче­ские требования.

Дебит скважины, удовлетворяющий указанным требовани­ям, называют оптимальным дебитом. Оптимальный дебит слу­жит технической нормой добычи нефти (газа) из скважины.

Контрольные вопросы:

1. Условия притока жидкости в скважину.

2. Какие допущения вводятся для вывода формулы Дюпюи.

3. Какие величины входят в формулу Дюпюи?

4. Охарактеризуйте виды гидродинамического несовер­шенства скважин.

5. Дайте характеристику гидродинамически совершенной скважине.

6. Чем учитывается несовершенство скважины?

7. Как определяется коэффициент совершенства сква­жины?

8. Дайте понятия оптимального и потенциального дебитов.

Похожие статьи:

poznayka.org

Реферат Продуктивность (нефтедобыча)

скачать

Реферат на тему:

План:

    Введение
  • 1 Продуктивность по нефти
  • 2 Продуктивность по газу
  • 3 Уравнение Дюпюи
    • 3.1 Потенциальная продуктивность и гидропроводность
    • 3.2 Фактическая продуктивность несовершенной скважины
  • Литература

Введение

Продуктивность — это коэффициент, характеризующий возможности скважины по добыче нефти.

По определению коэффициент продуктивности — это отношение дебита скважины к депрессии:где η — коэффициент продуктивности [м³/(сут*МПа)], Q — дебит скважины [м³/сут], ΔP = Pk − Pc — депрессия [МПа],Pk — пластовое давление (на контуре питания) замеряется в остановленной скважине [МПа],Pc — забойное давление (на стенке скважины) замеряется в работающей скважине [МПа].

1. Продуктивность по нефти

Коэффициент продуктивности определяется по результатам гидродинамических исследований и эксплуатации скважин.

Используя замеры на квазистационарных режимах (установившихся отборах), получают индикаторные диаграммы (ИД), представляющие собой зависимость дебита от депрессии или забойного давления. По наклону индикаторной линии определяют фактическую продуктивность нефтяной скважины.

2. Продуктивность по газу

Зависимость дебита газовых скважин от депрессии существенно нелинейна вследствие значительной сжимаемости газа. Поэтому при газодинамических исследованиях вместо коэффициента продуктивности определяют фильтрационные коэффициенты a и b по квадратичному уравнению:

При малых депрессиях приблизительно коэффициент продуктивности η по газу связан с фильтрационным коэффициентом a соотношением:

3. Уравнение Дюпюи

Уравнение Дюпюи является интегральной формой закона Дарси для случая плоскорадиального установившегося потока несжимаемой жидкости к вертикальной скважине. Уравнение Дюпюи связывает продуктивные характеристики скважины (дебит, продуктивность) и фильтрационные свойств пласта (гидропроводность, проницаемость).

3.1. Потенциальная продуктивность и гидропроводность

По уравнению Дюпюи потенциальная продуктивность скважины связана с гидропроводностью выражением:где η0 — потенциальная продуктивность [см3/сек/атм], которая может быть получена от совершенной скважины (при отсутствии скин-фактора), — коэффициент гидропроводности пласта (k — проницаемость горной породы [Д], h — эффективная толщина коллектора [см], μ - динамическая вязкость жидкости [сП]),B — коэффициент объёмного расширения (для пересчёта объёма жидкости из поверхностных в пластовые условия),Rk — радиус контура питания (воронки депрессии) [см], то есть расстояние от скважины до зоны пласта, где давление полагается постоянным и равным текущему пластовому давлению (примерно половина расстояния между скважинами),rc — радиус скважины по долоту в интервале вскрытия пласта [см].

3.2. Фактическая продуктивность несовершенной скважины

Для несовершенной скважины уравнение Дюпюи принимает следующий вид:где η — фактическая продуктивность несовершенной скважины, S — скин-фактор.

Литература

  • Справочная книга по добыче нефти под редакцией Ш. К. Гиматудинова, 1974.
  • Мищенко И.Т. Скважинная добыча нефти. М: Нефть и газ, 2003.

wreferat.baza-referat.ru