Физико-химические свойства нефтей (стр. 4 из 6). Зависимость вязкости нефти от температуры


Зависимость - вязкость - нефть

Зависимость - вязкость - нефть

Cтраница 1

Зависимость вязкости нефти от температуры приведена ниже.  [2]

Зависимость вязкости нефти от напряжения сдвига или градиента давления необходимо учитывать при решении задач по фильтрации аномальных нефтей в пористой среде.  [3]

Известна зависимость вязкости нефти от ее температуры. Такие зависимости, приведенные на рис. III.7 и III.8, подобны и для всех нефтей.  [5]

По графику зависимости вязкости нефти от температуры ( см. рис. 8) определяем вязкость бугульминской нефти при температуре 4, 5 С.  [6]

Кривые 1 - 9 отражают зависимость вязкости нефтей различных нефтедобывающих районов от температуры.  [7]

На рис. 3.11 приведен график зависимости вязкости нефти от температуры.  [8]

Выведены уравнения, по которым можно определить зависимость вязкости нефти от температуры.  [9]

Коэффициенты bt и Ь2 определяют по графику зависимости вязкости нефти [ Л, объемного коэффициента К и растворимости газа в нефти N от давления и по кривым фазовых проницаемостей.  [10]

Проинтегрируем уравнение движения в виде (2.9) с использованием зависимости вязкости нефти от температуры по формуле Рейнольдса - Филонова.  [11]

Это уравнение показывает, что в прямоугольной системе координат зависимость вязкости нефти от температуры будет представлена прямой.  [12]

Она определяется коллекторскими свойствами пласта, физическими свойствами жидкости, например зависимостью вязкости нефти и газа, а также коэффициента растворимости газа от давления.  [13]

АСПО, необходим учет неньютоновских свойств пластовых флюидов при построении прогнозной индикаторной кривой, т.е. учет зависимости вязкости нефти от градиента давления.  [14]

При расчетах по определению нефтеотдачи пласта при режиме растворенного газа для конкретной залежи необходимы следующие данные: 1) величина давления насыщения нефти газом; 2) зависимость вязкости нефти от давления; 3) зависимость объемного коэффициента пластовой нефти от давления; 4) зависимость растворимости газа в нефти от давления.  [15]

Страницы:      1    2

www.ngpedia.ru

Экспериментальные исследования температурных зависимостей вязкости нефтяных шламов

При утилизации продукции нефтешламовых амбаров и донных отложений основной проблемой является их высокая вязкость. Одним из способов понижения вязкости — повышение температуры среды. Поэтому возникает необходимость определения зависимости вязкости данного продукта от температуры. С целью определения зависимости вязкости от температуры были проведены исследования реологических свойств нефтяного шлама.По своим реологических характеристикам нефтешламы относятся, как правило, к неньютоновским жидкостям. Решающее влияние на изменение реологических свойств таких систем оказывает макромолекулярный уровень организации их структуры и сильная зависимость от внешних факторов (температура, давление, физические поля, добавление реагентов и т. д.).

Макрореологические параметры несут информацию о микроструктуре нефтяных систем. Носителями структурно-механических свойств нефтяных систем являются высокомолекулярные компоненты. Присутствие высокоплавких парафинов и асфальтосмолистых веществ в нефтяных системах, их дисперсность и степень взаимодействия обеспечивают определенный уровень прочности структуры нефтяной дисперсной системы.Нелинейное изменение вязкости нефтяных систем при нагреве обусловлено внутренней перестройкой их структуры при нагреве и переходом ее из связанного дисперсного состояния в свободное. Переход твердой фазы в жидкую характеризуется не одной температурной точкой, а областями перехода. Разность между температурами плавления и температурой кристаллизации для смеси парафинов значительно больше, чем для отдельных компонентов.

В работе [1] подробно рассмотрены зависимости реологических характеристик различных эмульсий от соотношения воды, асфальтосмолистых веществ и парафинов. Результаты экспериментальных исследований показали, что вязкость нефтяных эмульсий увеличивается с увеличением содержания воды вплоть до того, пока она не обратится из системы «вода в нефти» в систему «нефть в воде», вязкость которых очень мала. В данной работе было установлено, что чем больше содержание асфальтосмолистых веществ в эмульсии, тем ниже температура ее застывания, а чем больше содержание парафинов, тем температура застывания выше.

Для исследования температурных зависимостей вязкости нами использовался вискозиметр «Rheometer» по Геплеру, принцип работы которого основан на падении шарика в исследуемой среде.

Вязкость рассчитывали по формуле:       

где t — время прохождения шариком фиксированного расстояния в исследуемой среде (сек.), p—давление, оказываемое шариком на исследуемую среду (), k —постоянная прибора.

На рис. 1 изображены графики зависимости вязкости образцов нефтешлама № 2 и № 4 от температуры. В температурном ходе образца № 2 можно выделить несколько характерных участков. На первом —до 32 °С — происходит плавное снижение значения вязкости. Второй участок — от 32 до 50 °С —характеризуется резким снижением вязкости, очевидно, за счет плавления парафинов и деструктуризации асфальтосмолистых веществ.

После того, как процесс плавления парафинов заканчивается (52–88 °С), увеличение температуры в меньшей степени влияет на изменение вязкости.

Для образца № 4 во всем диапазоне исследования происходит плавное снижение вязкости. Для исследования зависимости вязкости от содержания воды, изготавливали образцы водонефтяных эмульсий с различным содержанием воды.

Рис. 1. Зависимость вязкости от температуры для образцов № 2 (кривая 1) и № 4 (кривая 2).

На рис. 2. представлены кривые зависимости вязкости образцов от температуры при различном содержании воды, по которым видно, что вязкость нефтешлама уменьшается с повышением температуры и увеличивается с повышением концентрации воды в ней. При более высоких температурах разница в значениях вязкости становится незначительной.

Рис. 2. Зависимость вязкости образца № 3 от температуры при различном содержании воды.

Увеличение вязкости с повышением концентрации в них воды обуславливается увеличением взаимодействия между каплями, благодаря более тесному сближению глобул воды, вследствие чего трение между слоями увеличивается, и вязкость растёт. То есть с ростом концентрации воды резко возрастает агрегация капель, поскольку с увеличением содержания воды растет число капель, находящихся в тесной близости в каждый момент времени. При низких скоростях сдвига, не вызывающих серьезных изменений в структуре агрегатов, каждый агрегат ведет себя как отдельная сфера с объемом, большим, чем сумма объемов составляющих его капель, потому что внутри структуры удерживается некоторое количество непрерывной фазы. Это изменяет соотношение эффективных объемов дисперсной и непрерывной фаз. В условиях оптимальной упаковки агрегаты связываются в непрерывную сетку [2].

На рисунке 3 приведен график зависимости  от температуры для донных нефтешламовых остатков Бухарского нефтеперерабатывающего завода.

Рис. 3. Зависимость вязкости от температуры для донных остатков из Бухарского нефтеперерабатывающего завода.

Полученные результаты показали, что в зависимости  наблюдаются три характерных участка снижения вязкости, на каждом из которых функция  может быть описана экспоненциальной зависимостью с разными показателями степени.

На первом участке (35–48 °С) при увеличении температуры вязкость постепенно понижается. На втором же участке (48–54 °С) происходит резкое снижение вязкости, за счет плавления парафинов и деструктуризации асфальтосмолистых веществ. После того, как процесс плавления парафинов заканчивается (54–75 С), увеличение температуры в меньшей степени влияет на изменение вязкости.

Литература:

1.      Аванесян В. Г. Реологические особенности эмульсионных смесей. М., Недра, 1980.-116с.

2.      Елисеев Н. Ю. Вязкость дисперсных систем. М., фирма «Блок», 1998. -80с.

moluch.ru

Физико-химические свойства нефтей - часть 4

Величина, обратная динамической вязкости, носит название текуче­сти и обозначается знаком T.

Жидкости, подчиняющиеся линейному закону течения Ньютона, на­зываются ньютоновскими, представляют индивидуальные вещества либо молекулярно - дисперсные смеси или растворы, внутреннее трение (вяз­кость) которых при данных температуре и давлении является постоянным физическим свойством. Вязкость не зависит от условий определения и скорости перемещения частиц (течения), если не создается условий для турбулентного движения.

Однако для коллоидных растворов внутреннее трение значительно изменяется при различных условиях потока, в частности при изменении скорости течения. Аномальное внутреннее трение коллоидных систем принято называтьструктурной вязкостью. В этом случае частицами, ко­торые перемещаются относительно друг друга в потоке, являются не моле­кулы, как в нормальных жидкостях, а коллоидные мицеллы, способные дробиться и деформироваться при увеличении скорости или изменении ус­ловий потока, в результате чего измеряемое внутреннее трение уменьша­ется (либо, наоборот, увеличивается). Большинство жидких нефтепродук­тов не выявляет признаков структурной вязкости в широком температур­ном интервале. Хотя они и представляют собой относительно сложные, ас­социированные жидкости, они не обладают коллоидной структурой, при­знаки которой обнаруживаются для жидких нефтепродуктов .лишь при низких температурах, приближающихся к температурам потери текучести.

В зависимости от температуры, при которой происходит перекачка, одна и та же жидкость может быть и ньютоновской в области высоких температур и неньютоновской в области низких температур. Неньютонов­ские жидкости могут быть разделены на пластичные, псевдопластнчные и дилатантные.

В пластических жидкостях наряду с вязкостью проявляются так же пластические свойства, заключающиеся в наличии некоторого предельного напряжения сдвига t0 , после достижения, которого только и возникает «те­кучесть» среды. Поведение пластических жидкостей объясняется наличи­ем в них пространственной структуры, достаточно прочной, чтобы сопро­тивляться любому напряжению, не превосходящему t0 . Если напряжение превышает t0, то структура полностью разрушается и жидкость выдает се­бя как обычная ньютоновская, при напряжении, равном (t=t0). Течение пластичных жидкостей подчиняется уравнению Шведова – Бенгама

Это уравнение после почленного деления на dv/ dR можно предста­вить в виде

h0 =h+h0 (1.11)

где h0 - эффективная или кажущаяся вязкость; h - истинная вяз­кость; h0 - структурная составляющая эффективная вязкость.

Псевдопластичные жидкости не обнаруживают начального напря­жения сдвига и для жидкостей справедлива независимость вида

(1.12)

где k и n — постоянные величины для данной жидкости. Характер­ным для псевдопластичных жидкостей является то, что n всегда меньше единицы.

Дилатантные жидкости, сходны с псевдопластическими тем, что в них тоже нет начального напряжения сдвига. Течение этих жидкостей так­же подчиняется степенному закону (1.12), но показатель n превышает еди­ницу.

У многих жидкостей зависимость между напряжением и градиен­том скорости изменяется во времени и поэтому не может быть выра­жена простыми формулами.

Жидкости, обладающие свойством, изотермического самопроизволь­ного увеличения прочности структуры во времени и восстановления структуры после ее разрушения, называются парафинистые нефти. При технических расчетах, а также при контроле качества нефтей и нефтепро­дуктов широкое распространение получил коэффициент кинематиче­ской вязкости, который представляет собой отношение коэффициента ди­намической вязкости m к плотности жидкости при той же температуре

(1.13)

В физической системе единиц широкое применение имеет единица кинематической вязкости в см2 /с (Стокc - Ст.) и мм2 /с (сантиСтокс - сСт). Таким образом, 1 Cm представляет собой вязкость жидкости, плотность которой равна 1г /1мл и сила сопротивления которой взаимному перемеще­нию двух слоев жидкости площадью 1 см2 , находящихся на расстоянии 1 см один от другого и перемещающихся один относительна другого со скоростью 1 см/с, равна 1 дн.

Вязкость нефтей и нефтепродуктов зависит от температуры, увеличиваясь с ее понижением. Для выражения зависимости вязкости от температуры предложено много различных формул. Наибольшее примене­ние для практических расчетов подучила формула Рейнольдса - Филонова

, (1.14) (1.15)

где U - коэффициент крутизны вискограммы, 1/К; v*,v - кинематическая вязкость при известной температуре Тж и при температуре Т; е - основание натурального логарифма.

Для нахождения коэффициента крутизны вискограммы для данного продукта достаточно знать значения вязкостей при двух температурах Т1 и Т2

Динамическая и кинематическая вязкости - это вполне определен­ные физические характеристики, которые, как и все другие величины, вы­ражены в абсолютных единицах и могут быть подставлены в те или другие расчетные формулы. В случаях, когда вязкость применяется не как расчет­ная величина, а как практическая характеристика нефтепродукта, ее при­нято выражать не в абсолютных, а в относительных, или условных, едини­цах.

Подобный способ выражения вязкости является результатом непра­вильного представления о том, что определение динамической и кинема­тической вязкостей отличается сложностью, и применения на практике упрощённых технических приборов, дающих показания в условных единицах вязкости. Неудобство всех условных, или относительных, единиц вязкости заключается в том, что вязкость, выраженная в этих единицах, не пред­ставляет собой физической характеристики нефтепродукта, так как она за­висит от способа определения, конструкции прибора и других условий. Из числа относительных обозначений наибольшим распространением пользу­ется так называемая удельная вязкость.

В различных странах в зависимости от выбора стандартных аппара­тов для определения условной вязкости приняты различные условные еди­ницы вязкости. Для пересчета в абсолютные единицы существуют эмпи­рические формулы; однако все эти формулы носят лишь приближенный характер, а некоторые из них просто неточны. Поэтому, если необходимо определить вязкость нефтепродукта в абсолютных единицах, следует оп­ределять ее непосредственно и только в крайних случаях прибегать к пере­счету. Условную вязкость выражают условными единицами: градусами или секундами. Эти единицы обычно представляют собой либо отношение времени истечения определенного объема исследуемого продукта при данной температуре ко времени истечения такого же объема стандартной жидкости при определенно установленной температуре, либо просто время истечения определенного объема испытуемой жидкости.

Как сказано выше, вязкость характеризует свойство данной жидко­сти оказывать сопротивление при перемещении одной части жидкости относительно другой. Такое сопротивление наблюдается как при движении жидкости относительно какого-либо тела, так и при движении какого-либо тела в жидкости. Оба эти случая дают принципиальную возможность из­мерения вязкости различными способами. Наиболее удобным способом измерения вязкости при движении жидкости относительно твердого тела является наблюдение над истечением исследуемых жидкостей из капил­лярных трубок. Для расчета пользуются формулой Пуазейля. Для расчета значений вязкости при движении каких-либо тел в жидкости может быть применен ряд формул, в которых учитываются характер движения и форма движущегося тела. Из этих формул наибольшее значение имеет приводи­мая ниже формула Стокса для расчета вязкости по скорости падения твер­дого шарика в жидкости. Способы измерения вязкости, основанные на ис­течении жидкости из капиллярных трубок, широко распространены. На­против, способы, построенные на принципе движения твердого тела опре­деленной формы в вязкой жидкости, применяются сравнительно редко вследствие того, что даже для тел простейшей формы соответствующие уравнения движения получаются очень сложными. Эти способы находят себе применение преимущественно в тех случаях, когда способы, основан­ные на втором принципе, т.е. на истечении жидкости из капилляров, прак­тически неприменимы вследствие экспериментальных трудностей.

Вязкость нефти изменяется в широких пределах и зависит от ее со­става, количества растворенного газа, примесей в некоторой степени, от давления, температуры, увеличиваясь с ее понижением.

Пересчет вязкости с одной температуры на другую связан с некото­рыми особенностями и на практике иногда сопровождается ошибками. В справочной литературе обычно приводятся сведения о вязкости нефтей при весьма ограниченных условиях и значениях температур. Чаще всего это температуры 20 и 50°С или 50 или 100°С. Нахождение коэффициента крутизны вискограммы позволяет определить вязкость только н интервале за­данных температур. А вот интерполяция результатов вне заданных интерва­лов недопустима, особенно для высоковязких и парафинистых нефтей. С уменьшением температуры ошибка расчетов может составлять 200-300%, а в ряде случаев расчет может быть связан с абсурдным результатом, по­скольку многие нефти теряют текучесть при достаточно высоких темпера­турах 20-25°С.

mirznanii.com

Зависимость вязкости от температуры -

С повышением температуры вязкость капельных жидкостей и их смесей понижается.

Математических уравнений, пригодных для практического применения, выражающих закон изменения вязкости от температуры, до настоящего времени не имеется, поэтому пользуются эмпирическими зависимостями. Для минеральных масел с вязкостью > 80 ccm при температурах от 30 до 1500 С пользуются выражением

где и – кинематические коэффициенты вязкости при заданной температуре t и температуре 500 С в ccm;

n – показатель степени, значения которого в зависимости от исходной вязкости при 500 С приведены ниже.

Вязкость 2,8 6,25 9,0 11,8 21,2 29,3
Показатель n 1,39 1,59 1,72 1,79 1,99 2,13
Вязкость 37,3 45,1 52,9 60,6 68,4 80,0
Показатель n 2,24 2,32 2,42 2,49 2,52 2,56

В гидросистемах применяются жидкости, вязкость которых при 500 С составляет 10-100 спз. В частности вязкость применяемого в самолетных гидросистемах масла АМГ – 10 при 500 С равна 10 ccm.

Зависимость вязкости распространенных масел от температуры показана на рис. 2. а и б. Очевидно, чем меньше изменяется вязкость с изменением температуры, тем выше качество и лучше эксплуатационные свойства рабочей жидкости. При применении жидкостей, имеющих крутую кривую температурной зависимости вязкости, затруднена работа гидросистемы в зимних условиях эксплуатации.

Обычно вязкостно – температурные свойства жидкостей характеризуются отношением Жидкость, предназначенная для эксплуатации в широком температурном интервале, считается пригодной, если ее вязкость при изменении температуры от – 500 С до + 500 С изменяется не более, чем в 100 раз.

Рис. 2. Графики зависимости динамической вязкости

масел от температуры:

1 – трансформаторное; 2 – индустриальное 12;

3- индустриальное 20; 4 – индустриальное 30;

5- индустриальное 50; 6- автотракторное;

7- МВП; 8- ЦИАТИМ-1; 9- АМГ-10

einsteins.ru

Изменение условий вязкости нефтей в зависимости от температуры

    В этой главе рассматриваются вопросы учета сырой нефти при ее дальнейшей транспортировке, не затрагивая вопросов измерения дебита нефтяных скважин. Под сырой нефтью будем подразумевать любую нефть (жидкость), полученную после сепарации, без всякого ограничения содержания каких-либо примесей (воды, солей, механических примесей и т.д.) и перекачиваемую на установки подготовки нефти. Эта жидкость представляет собой сложную смесь нефти, растворенного газа, пластовой воды, содержащей, в свою очередь, различные соли, парафина, церезина и других веществ, механических примесей, сернистых соединений. При недостаточном качестве сепарации в жидкости может содержаться свободный газ в виде пузырьков - так называемый окклюдированный газ. Все эти компоненты могут образовывать сложные дисперсные системы, структура и свойства которых могут быть самыми разнообразными и, самое главное, не постоянными в движении и времени. Например, структура и вязкость водонефтяной эмульсии могут изменяться в широких пределах в процессе движения по трубам, в зависимости от скорости, температуры, давления и других факторов. Всё это создаёт очень большие трудности при учете сырой нефти, особенно при использовании средств измерений, на показания которых влияют свойства жидкости, например, турбинных счетчиков. Особенно большое влияние оказывают структура потока, вязкость жидкости и содержание свободного газа. Частицы воды и других примесей могут образовывать сложную пространственную решетку, которая в процессе движения может разрушаться и снова восстанавливаться. Поэтому водонефтяные эмульсии часто проявляют свойства неньютоновских жидкостей. Измерение вязкости таких жидкостей в потоке представляет большие трудности из-за отсутствия методов измерения и поточных вискозиметров. Измерения, проводимые с помощью лабораторных приборов, не дают истинного значения вязкости, так как вязкость отобранной пробы жидкости отличается от вязкости в условиях трубопровода из-за разгазирования пробы и изменения условий измерения. Содержание свободного газа зависит от условий сепарации и свойств жидкости. Газ, находясь в жидкости в виде пузырьков, изменяет показание объемных счетчиков на такую долю, какую долю сам составляет в жидкости, то есть если объем газа в жидкости составляет 2 %, то показание счетчика повысится на 2 %. Точно учесть содержание свободного газа при определении объема и массы нефти очень трудно по.двум причинам. Во-первых, содержание свободного газа непостоянно и может изменяться в зависимости от условий сепарации (расхода жидкости, вязкости, уровня в сепараторах и т.д.). Во-вторых, технические средства для непрерывного измерения содержания газа в потоке в настоящее время отсутствуют. Имеющиеся средства, например, устройство для определения свободного газа УОСГ-ЮОМ, позволяют производить измерения только периодически и дают не очень достоверные результаты. Единственным способом борьбы с влиянием свободного газа является улучшение сепарации жидкости, чтобы исключить свободный газ или свести его к минимуму. Для уменьшения влияния газа УУН необходимо устанавливать на выкиде насосов. При этом объем газа уменьшается за счет сжатия. [c.28]     На рис. 8, а приведена кривая изменения консистентности, или реологическая кривая, характеризующая состояние аномально-вязкой пластовой нефти при постоянной температуре (25 °С) в условиях повышенных давлений, и кривая изменения эффективной вязкости той же нефти в зависимости от напряжения сдвига (рис. 8, б . [c.43]

    ЭПР ванадия при различных температурах в нефти, ее гудронах и асфальтенах, а также в различных образцах нефтей, разведенных бензолом, не отмечалось каких-либо изменений в форме и ширине сверхтонких линий от вязкости. При этом вязкости образцов менялись во много раз (от вязкости твердого гудрона почти до вязкости бензола) [248] и среднее расхождение между полученными результатами и данными химического анализа составляло менее 5%. А. В. Ильясов [248] связывает зависимость формы и ширины линии сверхтонкого спектра ванадия в американских нефтях с различием в геологических условиях образования нефти. Авторы [250] для повышения точности анализа предложили методику охлаждения образцов в кювете спектрометра (рис. 1.12). При [c.64]

    Нам не удалось найти точных указаний на числовые значения вязкости нефти в тех условиях, при каких она находится в пластах с водонапорным режимом, т. е. при высоких температурах, больших давлениях и с различным содержанием газа, растворенного в нефти. Конечно, нужны такие замеры вязкости нефти, когда все упомянутые условия выполнены одновременно в литературе же, обычно, приводятся результаты замеров вязкости нефти при высоких температурах, но при малых давлениях и притом выветрелой нефти, или приводятся графики изменения вязкости нефти в зависимости от количества растворенного газа, но опять-таки без соблюдения остальных условий и т. д. Приходится только пожалеть о том, что до сих пор для нужд нефтепромыслового дела не производится таких полноценных замеров вязкости нефти, без которых немыслимы сколько-нибудь точные гидродинамические расчеты. Поэтому мы вынуждены удовольствоваться выбором весьма ориентировочных числовых значений вяз= кости нефти в пластовых условиях к сожалению, то же самое повторится при анализе числовых значений некоторых иных физико-геологических констант. [c.49]

    Основы методов исследования отдельных свойств нефтей при пластовых условиях на аппаратуре всех типов одинаковы и подробно изложены в литературеАппаратура, предназначенная для определения физических характеристик пластовых нефтей, допускает проведение комплекса исследований, включающего пять этапов 1) однократное выделение газа (разгазирование) 2) ступенчатое разгазирование 3) определение зависимости давление — объем 4) определение вязкости 5) определение температуры насыщения нефти парафином. На основании полученных данных могут быть рассчитаны следующие характеристики пластовой нефти давление насыщения, коэффициент сжимаемости, газосодержание, плотность, объемный коэффициент и усадка, растворимость газа в нефти. По данным ступенчатого разгазирования могут быть получены зависимости между давлением и газосодержанием, давлением (или газосодержанием) и объемным коэффициентом, давлением (или газосодержанием) и плотностью нефти, давлением и плотностью выделяющегося газа. Кроме того, можно получить зависимость между давлением (или газосодержанием) и температурой насыщения нефти парафином, а также давлением (или газосодержанием) и вязкостью нефти. Эта аппаратура не рассчитана на проведение исследований изменения свойств нефтей при термических методах разработки залежей. [c.9]

    Залежи нефти находятся в условиях пониженных (I, II, Г, Д) и умеренных (16, IV, VIII) пластовых давлений и температур. Давления насыщения во всех горизонтах равны пластовым. Нефти разных горизонтов заметно различаются по газосодержанию и вязкости. При этом не наблюдается какой-либо закономерности изменения этих параметров в зависимости от глубины залегания нефтяных горизонтов. Нефти всех горизонтов несущественно отличаются от средней нефти по плотности, коэффициентам усадки и растворимости газа. [c.578]

    Добываемая нефть содержит значительное количество воды, механических примесей, минеральных солей. Поступающая на переработку нефтяная эмульсия подвергается обезвоживанию и обес-соливанию. Характерными чертами нефтяных эмульсий являются их полидисперсность, наличие суспендированных твердых частиц в коллоидном состоянии, присутствие ПАВ естественного происхождения, формирование при низких температура х структурных единиц. По данным [144] в процессе диспергирования капель воды в нефти образуется до триллиона полидисперсных глобул в 1 л 1%-ной высокодисперсной эмульсии с радиусами 0,1 10 мк, образующаяся нефтяная эмульсия имеет большую поверхность раздела фаз. Высокие значения межфазной энергии обуславливают коалесценцию глобул воды, если этому процессу не препятствует ряд факторов структурно-механический барьер, повышенные значения вязкости дисперсионной среды. Установлено, что повышению структурно-механической прочности межфазных слоев в модельной системе типа вода — мас о — ПАВ способствует добавка частиц гЛины [145]. Агрегативная устойчивость нефтяных эмульсий обеспечивается наличием в них ПАВ — эмульгаторов нефтяного происхождения так, эмульгаторами нефтяных эмульсий ромашкинской и арланской нефтей являются смолисто-асфальтеновые вещества, а эмульсий мангышлакской нефти алканы [144]. Интересные результаты об изменении степени дисперсности нефтяных эмульсий в зависимости от pH среды и группового состава нефтей получены в работе [146]. Механизм разрушения нефтяных эмульсий состоит из нескольких стадий столкновение глобул воды, преодоление структурно-механического барьера между rлoбyJ лами воды с частичной их коалесценцией, снижение агрегативной устойчивости эмульсии, вплоть до полного расслоения на фазы. Соответственно задача технологов состоит в обеспечении оптимальных условий для каждой стадии этого процесса, а именно - снижении вязкости дисперсионной среды (до 2—4 ммУс) при повышении температуры до некоторого уровня, определяемого групповым составом нефти, одновременно достигается разрушение структурных единиц уменьшении степени минерализации остаточной пластовой воды введением промывной воды устранении структурно-механического барьера введением определенных количеств соответствующих ПАВ — деэмульгаторов. Для совершенствования технологических приемов по обессоливанию и обезвоживанию нефтей требуется постановка дальнейших исследований по изучению условий формирования структурных единиц, взаимодействия [c.42]

    На рис. 3.2 представлена полиэкстремальная зависимость вязкости и температуры застывания нефтяной смеси от соотношения исходных нефтей. При транспорте в условиях переменных термобарических параметров нефть претерпевает многократные изменения структуры, результатом является изменение степени дисперсности и свойств поверхностных слоев, разделяющих объемную фазу и поверхность трубопроводов. [c.50]

chem21.info