Химическая природа и состав нефти и газа


Большая Энциклопедия Нефти и Газа

Химическая природа - нефть - Большая Энциклопедия Нефти и Газа, статья, страница 1

Химическая природа - нефть

Cтраница 1

Химическая природа нефти сильно сказывается на термостабильности тяжелой ее части, на температурном пороге образования смол и асфальтенов, на скорости превращения смол в ас-фальтены. Причем смолы и асфальтены, полученные при окислении компонентов из разных нефтей, заметно различались между собой, особенно по составу гетероатомов и их количественному содержанию.  [1]

Химическая природа нефти и природных газов в значительной мере своеобразна.  [2]

Какова химическая природа нефти и из каких соединений она состоит.  [3]

Исследование химической природы нефти в наше время диктуется не только теоретическим интересом, но и запросами практики.  [4]

Следовательно, химическая природа нефти, особенно содержание неуглеводородных компонентов в тяжелых нефтяных остатках и их состав, оказывает весьма существенное влияние на интенсивность и глубину термических превращений как самих компонентов, так и углеводородной части нефтяных остатков.  [5]

При этом химическая природа нефтей оказывает большое влияние на уровень концентрации смолисто-асфальтеновых веществ в нефтепродуктах, пороговую температуру процессов образования и разложения вторичных неуглеводородных компонентов, на глубину их химических изменений. Так, например, в сернистых и высокосернистых нефтях, в силу более низкой их термической стабильности, процессы химических изменений основных компонентов высокомолекулярной их части начинаются при более низких температурах, чем в случав малосернистых и несернистых нефтей.  [6]

Следовательно, химическая природа нефти наиболее сильно сказывается на качественном: п количественном составе гетеро-элементов в асфальтенах, тогда как содержание С н Н изменяется в сравнительно узких пределах.  [7]

Следовательно, химическая природа нефти наиболее сильно сказывается на качественном и количественном составе гетеро-элементов в асфальтенах, тогда как содержание С и Н изменяется в сравнительно узких пределах.  [8]

Изменения в химической природе нефтей пермских отложений Татарстана в сторону утяжеления фракционного состава связаны с удалением до 40 % легких фракций вследствие выветривания и биохимического преобразования. Биохимическое преобразование тяжелой нефти сопровождается деструкцией лабильных серо - и азотосо-держащих связей высокомолекулярных структур с последующей их сшивкой. В результате снижается содержание масел с 54 % до 10 % и увеличивается втрое ( с 11 % до 34 %) содержание спирто-бензольных смол и от 10 % до 38 % - асфальтенов.  [9]

В зависимости от химической природы нефти, из которой выделены твердые парафины, содержание в них разветвленных структур может колебаться в довольно широких пределах от нескольких процентов до 25 - 30 %, например для грозненской нефти.  [10]

Существует определенная связь между химической природой нефтей и концентрационным распределением серы в продуктах их термических превращений. Это должно найти свое объяснение в характере связей атомов серы в углеродном скелете компонентов нефти. Так, в случае коксования остатков малосернистых нефтей парафинового и парафино-нафтенового основания 40 - 60 % общего содержания серы в нефти переходит в кокс, а при коксовании малосернистых нефтей нафтенового основания в кокс переходит 20 - 30 % серы.  [11]

Эффективность применения депрессорных присадок зависит от химической природы нефти.  [12]

Химия нефти и газа - наука о химической природе нефти и газа, изучающая их состав, свойства и возможности их химического использования.  [13]

Низко температурные свойства дизельных топлив прямой гонки определяются исключительно химической природой нефтей, из которых они получены. В табл. 49 приведены данные о температурах застывания и помутнения ряда керосинов и газойлей, показывающие, что лучшие по цетановой характеристике топлива не могут быть использованы в качестве зимних дизельных топлив.  [14]

Страницы:      1    2    3    4

www.ngpedia.ru

Справочник химика 21

Химическая природа и групповой углеводородный состав нефтей и нефтяных газов

из "Технология переработки нефти и газа. Ч.1"

Нефть представляет собой маслянистую жидкость, обычно легко текущую и реже малоподвижную. [c.21] Основными химическими элементами, входящими в состав нефти, являются углерод (82—87 вес. %), водород (11—15 вес. %), сера (0,1—7,0 вес. /о), азот (до 2,2 вес. %) и кислород (до 1,5 вес. %). В нефтяной золе найдены V, N1, Ге, Са, Ка, К, Си, С1, I, Р, 81, Аз и др. Среди полезных ископаемых (исключая нефтяной газ) нефть известна как горючее с наивысшей теплотой сгорания, так как в ней содержится наибольшее количество водорода. Из компонентов горючих ископаемых водород обладает самой высокой теплотой сгорания. [c.21] Ниже приведены данные об элементарном составе (в вес. %) некоторых горючих ископаемых. Из этих данных видно, что от углей и сланцев нефть отличается более высоким содержанием углерода, водорода и относительно малыми количествами кислорода и серы. [c.21] Сланцы прибалтийские Торф сухой. ... [c.21] Углерод Водород Кислород, сера и др. [c.21] Низшие члены этого ряда — метан, этан, пропан и бутаны (нормальный и изостроения) — газообразны. Они находятся в нефти в растворенном состоянии, а также являются основной составной частью природного и попутного нефтяного газов. Природный газ добывают из газовых скважин, попутный — из нефтяных скважин одновременно с нефтью. Природные газы состоят в основном из метана (до 98 объемн. %) и небольших количеств этана, пропана и бутанов. Попутные нефтяные газы содержат большие количества пропана и бутанов, а также более тяжелые углеводороды. Кроме того, в состав природных и попутных газов входят сероводород, азот, двуокись углерода и гелий. [c.22] богатые пропаном, бутаном и более тяжелыми углеводородами, называются жирными. Из них получают газовый бензин, сжиженные газы и индивидуальные углеводороды для органического синтеза. В противоположность им, газы, почти нацело состоящие из метана и этана, именуются сухими и используются, главным образом, как бытовое и промышленное топливо, отчасти как сырье для производства сажи, ацетилена и продуктов органического синтеза. [c.22] В табл. 1 приведен состав природных и попутных нефтяных газов некоторых месторождений СССР. [c.22] Парафиновые углеводороды от пентана до гексадекана при нормальных условиях находятся в жидком состоянии. Они входят в состав бензиновых и керосиновых фракций нефтей. [c.22] Изучая состав и свойства кавказских нефтей, В. В. Марковников первый обнаружил в них парафиновые углеводороды изостроения. [c.22] Как правило, при одном и том же числе углеродных атомов в молекуле углеводороды с разветвленной цепью отличаются от углеводородов нормального строения более низкими плотностью, температурой застывания и температурой кипения. Парафиновые углеводороды с разветвленной цепью придают высокое качество бензинам, тогда как парафины нормального строения отрицательно влияют на поведение топлива в карбюраторных двигателях. Углеводороды парафинового ряда нормального строения являются желательными компонентами реактивного и дизельного топлив, смазочных масел, однако до определенных концентраций, при которых эти нефтепродукты удовлетворяют требованиям Государственных стандартов (ГОСТ) по низкотемпературным свойствам. [c.23] Парафиновые углеводороды С17 и выше при нормальных условиях представляют собой твердые вещества, температура плавления которых с увеличением молекулярного веса повышается. Твердые углеводороды входят в состав товарных парафинов и церезинов. Исключительно богаты парафиновыми углеводородами нефти озексу-атская Ставропольского края (до 29 вес. %), мангышлакские (до 20 вес. %), усть-балыкская в Западной Сибири (около 9%) и грозненская парафинистая (до 9%). [c.23] Парафины характеризуются пластинчатой или ленточной структурой кристаллов, температура плавления их колеблется от 40 до 70° С, число углеродных атомов в молекуле — от 21 до 32, молекулярный вес — от 300 до 450. Присутствуют твердые парафины преимущественно в масляных фракциях, выкипающих при температуре 350—5Т)0° С, что является одной из причин высокой температуры застывания этих фракций. [c.23] Церезины концентрируются главным образом в остатках вакуумной перегонки нефти, вызывая повдлшение температуры размягчения гудрона. [c.23] Парафины и церезины применяются для изготовления свечей, для пропитки соломки спичек, в производстве восковой бумаги, в качестве диэлектрика в электротехнической и радиотехнической промышленности. При окислении хорошо очищенного парафина воздухом в присутствии катализаторов образуются карбоновые кислоты, применяемые в мыловарении как заменители жиров. Крекингом парафина получают а-олефины — сырье для производства моющих веществ и др. [c.24] В нефтях крайне редко и в незначительных количествах встречаются олефины. Они были обнаружены, например, в бакинской, пенсильванской, галицийской, эльзасской и некоторых других нефтях. Большое количество олефинов и некоторых других непредельных углеводородов появляется в продуктах деструктивной переработки нефти. Эти углеводороды отличаются высокой реакционной способностью и поэтому легко полимеризуются, осмоляются, что приводит к снижению срока службы и хранения нефтепродуктов. Непредельные углеводороды являются нежелательными компонентами моторных топлив и смазочных масел. Многие непредельные углеводороды — ацетилен, этилен, пропилен, бутилен, бутадиен — получили широкое применение в производстве полиэтилена, полипропилена, синтетического спирта и каучука, пластических масс и других продуктов. [c.24] Нафтеновые углеводороды являются важнейшей составной частью моторных топлив и смазочных масел. Автомобильным бензинам они придают высокие эксплуатационные свойства. Моноцик-ли еские нафтеновые углеводороды с длинными боковыми парафи-но выми цепями являются желательными компонентами реактивных дизельных топлив, а также смазочных масел. Являясь главной составной частью масел, они обеспечивают выполнение одного из основных требований, предъявляемых к смазочным маслам, — малое изменение вязкости с изменением температуры. При одинаковом числе углеродных атомов в молекуле нафтеновые углеводороды характеризуются большей плотностью и меньшей температурой застывания, чем парафиновые углеводороды. [c.25] В настоящее время нафтеновые углеводороды легких фракций нефтей широко применяются в качестве сырья для получения ароматических углеводородов бензола, толуола и ксилолов. Находящиеся в бензиновых фракциях нафтеновые углеводороды в процессе каталитического риформинга превращаются в ароматические. Из индивидуальных нафтеновых углеводородов наибольший интерес представляет циклогексан высокой чистоты, являющийся сырьем для производства найлона. [c.25] Марковниковым и В. Н. Оглоблиным. Работами русских и советских ученых — А. А. Курбатова, К. В. Харичкова, М. И. Коновалова, С. С. Наметкина, А. Ф. Добрянского и др. было показано, что ароматические углеводороды являются составной частью нефтей и нефтяных фракций. [c.26]

Вернуться к основной статье

chem21.info

2. Химические соединения, входящие в состав нефти и природного газа.

2. Химические соединения, входящие в состав нефти и природного газа.

Природные углеводородные газы встречаются в виде свободных скоплений или растворены в нефти и состоят в основном из угле­водородов. В их составе присутствуют углекислота, азот, сероводород и благородные газы. Основным компонентом газа газовых месторо­ждений (свободные скопления газа) является метан. Тяжелые угле­водороды, углекислота, азот, сероводород, водород, аргон и гелий иногда присутствуют в значительных количествах.

Основными компонентами растворенных в нефти газов (газы нефтяных месторождений) являются углеводороды Сх — Св, т. е. метан, этан, пропан, бутан, пентан и гексан, в том числе изомеры углеводородов С4 — Се. Содержание тяжелых углеводородов в рас­творенных газах достигает 20—40%, редко 60—80%. Среди гомологов метана обычно преобладает этан (6—20%), затем пропан. Неугле­водородные компоненты растворенного газа представлены обычно азотом и углекислым газом с примесью сероводорода, аргона и гелия. Содержание азота колеблется в широких пределах: от нуля до 30— 50%, а иногда и выше. Содержание С02 в растворенных газах ко­леблется от 0 до 10—15%. Количество сероводорода обычно колеб­лется в пределах от 0 до 6%, редко достигая более высоких значений. Водород и благородные газы содержатся в микроколичествах.

Нефть представляет собой жидкость, обычно коричневого или черного цвета, часто с зеленоватым или зеленовато-желтым отливом. Консистенция нефти различна: от жидкой маслянистой до густой смолообразной. Она легче воды, имеет специфический запах, который в случае присутствия сернистых соединений становится очень непри­ятным. Нефть состоит из органических соединений, основную часть которых составляют углеводороды.

Углеводороды.Углерод в соединении с водородом способен образовывать множество соединений — углеводородов, составля­ющих основную часть горючих природных газов, нефтей и озоке-ритов. Они различаются между собой химическим строением, а сле­довательно, и свойствами. Часть углеводородов имеет насыщенный характер, т. е. не способна к реакциям присоединения, другая часть имеет ненасыщенный характер, т. е. может присоединять

 1. Парафиновые (метановые) углеводороды, или алканы.

Общая формула. Это полностью насыщенные соединения. Алканы могут иметь нормальное строение (неразветвленная цепь, например СН3—СН2—СН2—СН3) и изостроение (разветвленная цепь, например СН3—СН—СН3) углеродных атомов.

Парафиновые углеводороды характеризуются малой реакцион­ной способностью, химически весьма устойчивы.

2. Нафтеновые (полиметиленовые) углеводороды, или цикланы. Общая формула. Это непредельные соединения, но благодаря замыканию углеводородной цепи в кольцо они имеют насыщенный характер. Атомы углерода могут соединяться в циклы из трех и более метальных групп. В нефтях широко распространены углеводороды пяти- и шестичленной структуры, к которым могут присоединяться и цепочки метанового строения — алкильные цепи

По своим химическим свойствам нафтеновые углеводороды близки к алканам. Особенностью нафтеновых углеводородов и их произ­водных является способность к изомеризации. Под влиянием ката­литических и термических процессов системы из шестичленных циклов легко переходят в пятичленные, например циклогексан и бен­зол в метилциклопентан.

В легких фракциях нафтеновых нефтей преобладают производ­ные циклогексана, в метановых и метаново-нафтеновых нефтях преобладают производные циклопентана. В нефтях содержатся производные циклопентана и циклогексана с короткими цепями.

В более тяжелых фракциях нефтей содержатся полициклические нафтеновые углеводороды, среди них широко распространен бициклический углеводород декалин.

3. Ароматические углеводороды (арены). Простейшие из них имеют общую формулу Cnh3n-6 и содержат в своем составе так называемое ароматическое ядро бензола

Эти соединения довольно устойчивы. В то же время они обла­дают повышенной химической активностью по сравнению с метановыми и нафтеновыми углеводородами и довольно легко могут быть от них отделены.

Арены обладают высокой растворяющей способностью, они неограниченно растворяются друг в друге и других раство­рителях.

Ароматические углеводороды легко вступают в реакции конденсации. Из моноциклических аренов в углеводоро­дах нефтей содержатся преимущественно гомологи бензола с не­длинными боковыми цепями.

Многие углеводороды, например высокомолекулярные парафины, в твердом состоянии имеют кристаллическое строение.

Сернистые соединения. В нефтях содержатся как органи­ческие, так и неорганические формы сернистых соединений. Сера, входящая в эти соединения, двухвалентна.

К неорганическим формам относятся элементарная сера и серо­водород. Элементарная сера (S) содержится в нефтях лишь в очень незначительных количествах. При хранении нефтей на воздухе в них увеличивается количество элементарной серы, главным образом за счет окисления сероводорода. Сероводо­род (Н2S) — кислота с температурой кипения — 59,6° С. Обладает способностью соединяться с металлами, вызывая их коррозию. Сероводород в пластовых условиях может содержаться как в газах, так и в растворенном состоянии в нефтях.

Кислородные соединения. Атомы кислорода в нефтях входят в следующие соединения: нафтеновые кислоты, соединения фенольного характера, эфиры, смолистые вещества.

Нафтеновые кислоты — соединения, в которых одно­временно содержатся нафтеновый цикл и карбоксильная (кислотная) группаАтом водорода карбоксильной группы спо-

studfiles.net

Химия нефти и газа

Химия нефти и газа

РЕСУРСЫ И ДОБЫЧА НЕФТИ

Термин «нефть» включает в себя: жидкие продукты широкого диапазона качества, сюда входят сверхлегкие нефти (газовый конденсат с содержанием светлой фракции более 80%), обычные нефти и сверхтяжелые (высоковязкие и природные нефтебитумы)

Мировые запасы нефти оцениваются следующими цифрами в миллиардах тонн.

1) Газовый конденсат 1-1,5

2) Обычные нефти 220-280

3) Сверхтяжелые нефти 650-750

Запасы обычной нефти распределены так:

1) На ближнем и среднем востоке примерно 60%. Среди стран этого региона первое в мире место занимает Саудовская Аравия, где сосредоточена ¼ мировых запасов нефти. огромными запасами нефти в этом регионе обладает Ирак, Иран, Кувейт и арабские страны, каждая из которых имеет 1/10 всех запасов.

2) Южная и северная Америка примерно 15%. Наиболее крупные запасы в Венесуэле, Мексике, США, Канаде, Аргентине, Бразилии.

3) Африка, примерно 8%. Ливия, Нигерия, Алжир.

4) Россия, примерно 6%. Основными регионами является Урало-Волжский, Западно-Сибирский и Северо-Кавказский.

5) На остальные страны приходится примерно 11%. Месторождение северного моря, Британские и Норвежские владения, Китай, Индонезия, Малайзия, Австралия.

Мировая добыча нефти существенно менялась по годам. Начало добычи относится к 1860 году и резко росла до 1978, а потом стала падать

Разведанных запасов нефти хватит на 100-120 лет.

Углеводородные газы

Мировые запасы природного углеводородного газа оцениваются в триллионах тонн. Из общих запасов примерно 55% приходится на Россию. Ближайший восток – 45%, Америка – 15%, Азия и Тихий океан – 10%, Африка – 10%, западная Европа – 6%(в миллиардах тонн)

Тюменская область – 86%, Оренбургская – 5,6%, Астраханская – 2%.

Современные представления о происхождении нефти, газа и их скоплений в недрах земли.

Существует две основные гипотезы происхождения нефти.

1) Биогенова – производная от растений и животных.

2) Неорганическая – произошла в недрах земли.

Менделеев утверждал, что нефть образуется на больших глубинах при высокой температуре вследствие взаимодействия воды с карбидами металлов.

Существует много гипотез происхождения нефти.

1) Магматическая

2) Карбидная

3) Механическая

4) Вулканическая

5) Взрывная

6) Космическая

Существует несколько этапов многостадийного процесса нефтеобразования в природе.

1) Осадконакопление.

После отмирания растительных и животных организмов выпадают на дно морских или пресноводных бассейнов и накапливаются в илах, рассеиваясь в минеральных остатках.

2) Биохимическая.

Накопленный на дне бассейна глубиной в несколько метров органический осадок медленно преобразуется, уплотняется, частично обезвоживается за счет протекания биохимических процессов в условиях ограниченного доступа кислорода. Этот процесс сопровождается выделением углекислоты, метана, воды, сероводорода и аммиака. Осадок одновременно пополняется за счет биосинтеза и тел бактерий. В осадке возрастает содержание углерода и водорода за счет деструктивных процессов.

3) Протокатогинез.

Пласт органических осадков медленно, со скоростью 50-300 м в миллион лет опускается на глубину 1,5-2 км, а пласт находящийся сверху покрывается слоем новых молодых осадков. По мере поступления медленно повышается температура и давление, биохимические процессы затухают вследствие гибели микроорганизмов.

4) Мезоатогинез.

Осадок опускается на глубину 3-4 км., температура повышается до 1500 С, органическое вещество подвергается деструкции с образованием битуминозных веществ, которые в своем составе содержат почти весь комплекс нефтяного ряда.

5) Апокатогинез.

глубина нахождения осадка 4,5 км, температура 2500 С, органическое вещество исчерпало свой нефтегенерирующий потенциал и продолжает реализовываться в метанорегенерирующий потенциал. Чем глубже, тем более легкая нефть содержится.

Классификация товарных нефтепроводов.

1) Газ (бытовой)

2) Бензины (авиабензины, автобензины)

3) Реактивные топлива.

4) Дизельное топливо.

5) Газотурбинные топлива.

6) Котельные топлива.

7) Нефтяные масла (смазочные и несмазочные) Смазочные: моторные, трансмиссионные, индустриальные, энергетические. Несмазочные (специальные): масла предназначенные не для смазки, а в качестве рабочей жидкости, в тормозных системах, насосах, а так же к ним относятся парфюмерные и смазочно-охлаждающие.

8) Нефтяные коксы, битумы, пёки.

9) Нефтехимическое сырье: ароматические углеводороды, парафины, церезины. Парафины бывают жидкие и твердые.

10) продукты специального назначения: водород, присадки, осветительный керосин, консистентные смазки. Смазки могут быть антифрикционные и защитные.

Элементный химический состав нефти.

Нефть – это смесь очень большого числа химических соединений на основе углеводорода. Полный химический состав нефти выражают двумя методами: элементарным химическим составом и групповым химическим составом.

Элементарный химический состав – это количественный состав химических элементов, входящих в нефть и выраженных в мольных долях или процентах. Число химических элементов в составе нефтей очень велико (вся таблица Менделеева), но основными из них являются:

1) углерод, содержится в различных нефтях от 83 до 87%. При чем, чем тяжелее (по плотности и фракционному составу) нефть, тем содержание углерода выше. Углерод входит в состав всех соединений нефти.

2) водород, составляет11-14%, с утяжелением нефти эта величина уменьшается. Углерод и водород являются основными горючими элементами нефти (носителями энергии, но различаются теплотой сгорания)

Водород – 133 МДж/кг

Углерод – 33 МДж/кг

В связи с этим принято характеризовать эти горючие свойство соотношением водорода к углероду ( Н:С)

Это соотношение является важнейшей химической характеристикой нефти и ее фракций для расчета процесса горения, классификаций процесса газофикации, гидрогинезации, коксования и т.д.

Групповой углеводородный состав нефти.

Нефть представляет собой маслянистую жидкость, в состав которой входит углерод 87%, водород 15%, сера 0,7%, азот 2,2%, кислород 1,5%.

В нефти найдены металлы:

- железо

- вольфрам

- никель

Металлы найдены в зале.

В состав нефти входит 4 группы углеводорода. Парафиновые (алканы), непредельные углеводороды (алкены), нафтеновые и ароматические углеводороды.

Относительное содержание этих групп в нефтях весьма различно. Преобладание той или иной группы углеводорода придают нефтям различные свойства и от этого будет зависеть метод переработки и область применения нефтепродуктов.

Парафиновые углеводороды.

Самым низшим является метан. От метана до бутана эти углеводороды газообразны. В нефтях они находятся в растворенном состоянии и являются основной частью природного газа.

Природный газ добывают из газовой скважины, а попутный из нефтяной, вместе с нефтью. Природные газы в основном состоят из метана (до 98%), остальное – это пропан, этан, бутан. Попутные нефтяные газы содержат кроме метана – бутана много производных от пропана и бутана, а так же тяжелые углеводороды. кроме того, в состав природных и попутных газов входит сероводород, азот, двуокись углерода и гелий. Газы, богатые тяжелыми углеводородами называются жирными. Из них получают газовый бензин. Газы, состоящие из метана и этана называются сухими и используются как промышленное и бытовое топливо.

Парафиновые углеводороды от гептана до гепсодекана находятся в жидком состоянии и входят в состав бензиновых, керосиновых и дизельных фракций.

парафиновые углеводороды от С17 и выше при нормальных условиях находятся в твердом состоянии.

Непредельные углеводороды (олифиновые).

В нефтях они встречаются очень редко, а появляются в процессе диструктивной переработки нефти. Эти углеводороды отличаются высокой реакционной способностью, поэтому они легко полимерезуюься, осмоляются, уменьшая срок хранения нефтепродуктов. они нежелательны в нефтепродуктах. Многие непредельные углеводороды, такие как: ацетилен, этилен, пропилен, бутилен – получили широкое применение в производстве каучука, пластмасс, полиэтилена, полипропилена.

Нафтеновые углеводороды.

они являются важнейшей частью моторных топлив и нефтяных масел, предавая им высокие эксплуатационные свойства. Их применяют для получения бензола, толуола, ксилола. Циклогексан применяется для получения нейлона.

Ароматические углеводороды.

В состав нефтей входят ароматические углеводороды с числом циклов от 1 до 4. Распределение их по фракциям различно. Они обладают наибольшей плотностью и являются ценным компонентом бензина, но снижают качество реактивных и дизельных топлив, так как ухудшают характеристики их сгорания. По сравнению с другими группами углеводородов они обладают высокой растворяющей способностью к органическим веществам, они токсичны. Применяются как компоненты нефтепродуктов при производстве взрывчатых веществ в качестве сырья для нефтехимического синтеза.

НЕУГЛЕРОДОВОДОРОДНЫЕ СОЕДИНЕНИЯ НЕФТИ.

Сернистые соединения.

Сера встречается во всех нефтях. Наименьшее содержание серы озоксуатской нефти (0,1%) и наибольшее в американских нефтях (до 6%). С повышением содержания серы в нефтях возрастает плотность, коксуемость, содержание смол и асфальтенов. Распределение серы по фракциям зависит от природы нефти и типа сернистых соединений. Обычно содержание серы увеличивается от низкокипящих фракций к высококипящим (в остатках). Различают три группы сернистых соединений. К первой относятся сероводород и меркаптаны, обладающие кислотными свойствами (коррозионностью). Ко второй относятся сульфиды и дисульфиды. При температуре от 1300 до 1600 С они распадаются на сероводород и меркаптаны. К третьей группе относятся тиофаны и тиофены. Сернистые соединения снижают химическую стабильность топлив, предают неприятный запах и вызывают коррозию двигателей. Основное количество серы содержится в виде производных тиофанов и тиофенов.

mirznanii.com

Химический состав нефти и газа

Химический состав нефти и газа

Химический состав нефти и газа.

Что такое нефть и газ известно всем. И в то же время даже специалисты не могут договориться между собой о том, как образуются нефтяные залежи. Такая ситуация покажется не столь уж странной, если начать знакомиться с «биографией» этого полезного ископаемого.

В лучшем сорте угля – антраците, например, на углерод приходится 94%. Остальное достается водороду, кислороду и некоторым другим элементам.

Конечно, чистого угля в природе практически не бывает: его пласты всегда засорены пустой породой, различными вкраплениями и включениями… Но в данном случае мы говорим не о пластах, месторождениях, а лишь об угле как таковом.

В нефти содержится почти столько же углерода, сколько и в каменном угле – около 86%, а вот водорода побольше – 13% против 5-6% в угле. Зато кислорода в нефти совсем мало – всего 0,5%. Кроме того, в ней есть также азот, сера и другие минеральные вещества.

Такая общность по элементному составу, конечно, не могла пройти незамеченной для ученых. И потому нефть вместе с газом относят к тому же классу горных пород, что уголь (антрацит, каменный и бурый), торф и сланцы, а именно – к классу каустобиолитов.

Это замысловатое слово составлено из трех греческих слов: kaustikos – жгучий, bios – жизнь и lithos – камень. Можете теперь перевести сами.

Такое название может показаться не совсем точным. Как это к классу камней, пусть органического происхождения, пусть даже и горючих, можно отнести жидкую нефть , а тем более природный газ?...

Замечание вполне резонное. Однако, наверное, Вы удивитесь еще больше, когда узнаете, что нефть специалисты относят к минералам (хотя латинское слово minera означает «руда»). Вместе с газом она относится к числу горючих полезных ископаемых. Так уж сложилось исторически, и не нам с Вами эту классификацию менять. Просто давайте иметь ввиду, что минералы бывают не только твердыми.

В химическом отношении нефть – сложнейшая смесь углеводородов, подразделяющаяся на две группы – тяжелую и легкую нефть. Легкая нефть содержит примерно на два процента меньше углерода, чем тяжелая, зато соответственно, большее количество водорода и кислорода.

Главную часть нефтей составляют три группы углеводородов – алканы, нафтены и арены.

Алканы (в литературе Вы можете также столкнуться с названиями предельные углеводороды, насыщенные углеводороды, парафины) химически наиболее устойчивы. Их общая формула СnH(2n+2). Если число атомов углерода в молекуле не более четырех, то при атмосферном давлении алканы будут газообразными. При 5-16 атомах углерода это жидкости, а свыше – уже твердые вещества, парафины.

К нафтанам относят алициклические углеводороды состава Cnh4n, CnH(2n-2) и CnH(2n-4). В нефтях содердится преимущественно циклопентан С5Н10, циклогексан С6Н10 и их гомологи. И наконец, арены (ароматические углеводороды). Они значительно беднее водородом, соотношение углерод/водород в аренах самое высокое, намного выше, чем в нефти в целом. Содержание водорода в нефтях колеблется в широких пределах, но в среднем может быть принято на уровне 10-12% тогда как содержание водорода в бензоле 7,7%. А что говорить о сложных полициклических соединениях, в ароматических кольцах которых много ненасыщенных связей углерод-углерод! Они составляют основу смол, асфальтенов и других предшественников кокса, и будучи крайне нестабильными, осложняют жизнь нефтепереработчикам.

Посмотрите, как устроены молекулы пентана С5Н10, циклогексана С6Н12 и бензола С6Н6 – типичных представителей каждого из этих классов:

Кроме углеродной части в нефти имеются асфальто-смолистая составляющая, порфирины, сера и зольная часть.

Асфальто-смолистая часть – темное плотное вещество, которое частично растворяется в бензине. Растворяющуюся часть называют асфальтеном, а нерастворяющуюся, понятно, смолой.

Порфирины – особые органические соединения, имеющие в своем составе азот. Многие ученые полагают, что когда-то они образовались из хлорофилла растений и гемоглобина животных.

Серы в нефти бывает довольно много – до 5%, и она приносит немало хлопот нефтяникам, вызывая коррозию металлов.

И, наконец, зольная часть. Это то, что остается после сжигания нефти. В золе, обычно содержатся соединения железа, никеля, ванадия и некоторых других веществ. Об их использовании мы поговорим в дальнейшем.

К сказанному, пожалуй, можно добавить, что геологический сосед нефти – природный газ – тоже непростое по своему составу вещество. Больше всего – до 95% по объему – в этой смеси метана. Присутствуют также этан, пропан, бутаны и другие алканы – от С5 и выше. Более тщательный анализ, позволил обнаружить в природном газе и небольшие количества гелия.

Использование природного газа началось давно, но осуществлялось поначалу лишь в местах его естественных выходов на поверхность. В Дагестане, Азербайджане, Иране и других восточных районах с незапамятных времен горели ритуальные «вечные огни», рядом с ними процветали за счет паломников храмы.

Позже отмечены случаи применения природного газа, получаемого из пробуренных скважин или колодцев и шурфов, сооружаемых для разных целей. Еще в первом тысячелетии нашей эры в китайской провинции Сычуань при бурении скважин на соль было открыто газовое месторождение Цзылюцзынь. Практичные люди из Сычуаня довольно скоро научились использовать этот газ для выпаривания соли из рассола. Вот Вам пример типично энергетического применения.

В течение многих столетий человек использовал такие подарки природы, но промышленным освоением эти случаи не назовешь. Лишь в середине 19 века природный газ становится технологическим топливом, и одним из первых примеров можно привести стекольное производство, организованное на базе месторождения Дагестанские огни. Кстати, в настоящее время более 60% стекольного производства базируется на использовании в качестве технологического топлива именно природного газа.

Вообще говоря, преимущества газового топлива стали очевидны довольно давно, пожалуй, с момента появления промышленных процессов термической (без доступа воздуха) деструкции твердых топлив. Развитие металлургии привело к замене примитивных смолокурен коксовыми печами. Коксовому газу быстро нашлось бытовое применение – появились газовые рожки для освещения улиц и помещений. В 1798 году в Англии было устроено газовое освещение главного корпуса мануфактуры Джеймса Уатта, а в 1804 году образовалось первое общество газового освещения. В 1818 году газовые фонари осветили Париж. И очень скоро коксование стали применять для получения не столько металлургического кокса, сколько сначала светильного, а потом и бытового газа. Газификация быта стала синонимом прогресса, процессы газификации топлива совершенствовались, а получаемый газ стали все чаще называть «городским газом».

Интересно отметить, что совершенствование пирогенетической технологии шло по пути более полного использования топливного потенциала. При сухой перегонке типа коксования в газ переходит не более 30-40% теплоты топлива. При окислительной газификации с добавлением кислорода, воздуха, водяного пара можно добыить перевода в газ до 70-80% и более потенциальной теплоты. Практически при газификации твердого топлива в зольном остатке органических соединений не остается.

Однако у газа, получаемого при окислительной газификации, теплота сгорания ниже, чем у газа при коксовании. Поэтому при производстве городского газа комбинировали процессы коксования с газификационными. Впоследствии, уже в 20 веке , появилась возможность повысить калорийность бытового газа, включив в схему газификации операцию каталического метанирования – превращения части оксида углерода и водорода, содержащихся в газе окислительной газификации, в метан. Тем самым удалось достичь необходимой для нормальной работы горелок теплоты сгорания получаемого бытового газа не менее 16,8 Мдж/м3 (4000 ккал/м3).

Итак, газ заменил другие виды топлива сначал для освещения, затем для приготовления пищи, отопления жилищ. Но почти столетие для этих целей использовался практически только искусственный газ, полученный из твердых топлив. А что же природный газ ?

Дело в том, что всерьез стали искать и разрабатывать месторождения природного газа в 20-х годах 20 века. И лишь в 30-х годах техника бурения на большие глубины (до 3000 метров и более) позволила обеспечить надежную сырьевую базу газовой промышленности.

Развитию новой отрасли помешала вторая мировая война. Тем не менее уже в 1944 году начались изыскательские работы по прокладке первого промышленного газопровода Саратов-Москва. Это был первенец, за которым в 50-х годах последовали Дашава-Киев, Шебелинка-Москва. В следующие десятилетия весь СССР пересекали мощные трассы, по которым в настоящее время передаются огромные количества природного газа. Именно поэтому газ становится постепенно энергоносителем номер один для коммунально-бытовых нужд и промышленных энергетических установок. Доля природного газа превысила 60-процентный рубеж в энергетике производства цемента, стекла, керамики, других строительных материалов, приближается к 50 % в металлургии и машиностроении. Применение природного газа в стационарных энергетических установках позволяет с учетом снижения расхода на собственные нужды электростанций увеличить их КПД на 6-7%, повысить производительность на 30% и более.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://subscribe.ru/catalog/hind.chem.neftegaz

topref.ru

Раздел I. Общие сведения о нефти

Раздел I. Общие сведения о нефти

ВВЕДЕНИЕ

Значение нефти и газа для энергетики, транспорта, обороны страны, для разнообразных отраслей промышленности и для удовлетворения бытовых нужд населения в наш век исключительно велико. Нефть и газ играют решающую роль в развитии экономики любой страны. Природный газ – очень удобный для транспортировки по трубопроводам и сжигания, является дешевым энергетическим и бытовым топливом. Из нефти вырабатываются все виды жидкого топлива: бензины, керосины, реактивные и дизельные сорта горючего – для двигателей внутреннего сгорания, мазуты – для газовых турбин и котельных установок. Из нее получают огромный ассортимент смазочных и специальных масел и консистентных смазок. Из нефти вырабатывают также парафин, сажу для резиновой промышленности, нефтяной кокс, многочисленные марки битумов для дорожного строительства и многие другие товарные продукты.

Вторичная переработка нефтяного и газового сырья получила название нефтехимического синтеза. В настоящее время 25 % мировой химической продукции выпускается на основе нефти и углеводородных газов. Ближайшие перспективы развития нефтехимической промышленности благоприятны как по масштабам производства, так и по безграничному разнообразию промежуточных и конечных продуктов синтеза.

К нефтехимической продукции относятся пластические массы, синтетические каучуки и смолы, синтетические волокна, синтетические моющие средства и поверхностно-активные вещества, некоторые химические удобрения, присадки к топливам и маслам, синтетические смазочные масла, белково-витаминные концентраты, многочисленные индивидуальные вещества: спирты, кислоты и альдегиды, кетоны, хлорпроизводные эфиры, гликоли, полигликоли, глицерин и другие, применяющиеся в промышленности, сельском хозяйстве, медицине и в быту.

Материал учебного пособия «Химия нефти и газа» изложен в соответствии с Государственным образовательным стандартом профессионального высшего образования направления 130500 «Нефтегазовое дело» специальности 130501 «Проектирование, сооружение и эксплуатация газонефтепроводов и газонефтехранилищ», а также рабочей программой данной дисциплины.

Курс «Химия нефти и газа» является весьма важным в подготовке инженеров данного направления. С одной стороны, этой дисциплиной завершается общехимический цикл, с другой – дается база для освоения физико-химической сущности процессов, происходящих при очистке и переработке нефти и нефтепродуктов, а также приводятся методы определения и контроля физико-химических свойств нефтепродуктов, в том числе топлив и масел.

В разделе «Химия нефти» дается характеристика органических соединений, входящих в состав нефти и нефтепродуктов, их строение, физические и химические свойства, способы получения и основные области применения. Кроме того, приводится классификация органических реакций, которые используются в нефтехимических производствах.

Химические и физико-химические аспекты разделения составных частей нефти, ее очистки от присутствующих в ней солей, воды и других примесей, дальнейшей переработки нефтепродуктов с целью получения качественных топлив и масел описаны в разделе «Промышленная переработка нефти».

Важным является раздел «Физико-химические методы исследования нефтепродуктов», так как в нем приводятся методы испытания и контроля основных физико-химических свойств топлив и масел.

Практическую значимость имеет раздел «Эксплуатационные свойства топлив», который подтверждает необходимость предъявления высоких требований к показателям качества топлив.

Раздел «Нефтехимия» показывает конкретные направления использования в химической промышленности органических веществ, содержащихся в нефти и горючих газах.

Последний раздел «Нефтегазовый комплекс и экология» дает представление об экологических проблемах, существующих при нефте- и газодобыче, их переработке, транспортировке, а также эксплуатации.

И ГОРЮЧИХ ГАЗАХ

ГЛАВА 1. ОСНОВНЫЕ КОНЦЕПЦИИ

ПРОИСХОЖДЕНИЯ НЕФТИ

Существует две теории происхождения нефти: биогенная и абиогенная. Сторонники первой – органики – считают, что нефть образовалась в осадочном чехле земной коры в результате глубокого преобразования животных и растительных организмов, живших миллионы лет назад. Другие – неорганики – доказывают, что нефть образовалась в мантии земли неорганическим путем.

1.1. Органическая концепция

Органическая концепция начала развиваться после создания работы М. В. Ломоносова о нефти. Он писал: «Увериться можем о происхождении сих горючих подземных материй из растущих вещей их легкостью». Сторонники органической концепции спорили о том, что явилось исходным веществом для нефти: растения или животные? Начиная с работ А.Д. Архангельского (1927 г.) и П.Д. Траска (1926- 1932 гг.) развернулись исследования органического вещества современных осадков и древних осадочных пород. Значительное влияние на направление исследований оказал И.М. Губкин. Он подчеркивал, что широкое распространение месторождений нефти в осадочных толщах позволяет считать, что источником нефти может быть только широко распространенное в осадочных породах рассеянное органическое вещество (ОВ) смешанного растительно-животного происхождения. Последняя теория, детально разработанная И.М. Губкиным, носит название сапропелитовой (от слова «сапропель» - глинистый ил) и является господствующей. В природе широко распространены различные виды сапропелитов.

В СССР были проведены исследования, в результате которых удалось установить роль микроорганизмов в образовании нефти. Т.Л. Гинзбург-Карагичева, открывшая присутствие в нефти разнообразнейших микроорганизмов, привела в своих исследованиях много новых интересных сведений. Она установила, что в нефтях, ранее считавшихся ядом для бактерий, на больших глубинах идет кипучая жизнь, не прекращавшаяся миллионы лет подряд. Целый ряд бактерий живет в нефти и питается ею, меняя, таким образом, химический состав нефти. Академик И.М. Губкин в своей теории нефтеобразования придавал этому открытию большое значение. Гинзбург-Карагичевой установлено, что бактерии нефтяных пластов превращают различные органические продукты в битуминозные. Под действием ряда бактерий происходит разложение органических веществ и выделяется водород, необходимый для превращения органического материала в нефть.

Академиком Н.Д. Зелинским, профессором В.А. Соколовым и рядом других исследователей большое значение в процессе нефтеобразования придавалось радиоактивным элементам. Действительно, доказано, что органические вещества под действием альфа-лучей распадаются быстрее и при этом образуются метан и ряд нефтяных углеводородов.

Академик Н.Д. Зелинский и его ученики установили, что большую роль в процессе нефтеобразования играют катализаторы. В более поздних работах академик Зелинский доказал, что входящие в состав животных и растительных остатков пальмитиновая, стеариновая и другие кислоты при воздействии хлорида алюминия в условиях сравнительно невысоких температур (150-400 °С) образуют продукты, по химическому составу, физическим свойствам и внешнему виду похожие на нефть.

Профессор А.В. Фрост показал, что вместо хлорида алюминия катализатора, отсутствующего в природе, его роль в процессе нефтеобразования играют обыкновенные глины, глинистые известняки и другие породы, содержащие глинистые минералы. Из результатов вышеприведенных исследований становится ясным, что исходным веществом для нефти стали растения и животные.

С позиций современной органической концепции нефть образуется следующим образом. Моря и озера населены планктоном. После его отмирания остатки растений и животных организмов падают на дно, образуя толстый слой ила. После этого начинается биохимическая стадия образования нефти. Микроорганизмы при ограниченном доступе кислорода перерабатывают белки, углеводы и т. д. При этом образуются метан, углекислый газ, вода и немного углеводородов. Данная стадия происходит в нескольких метрах от дна моря. Затем осадок уплотняется, происходит диагенез. Начинаются химические реакции между веществами под действием температуры и давления. Сложные вещества разлагаются на более простые. Биохимические процессы затухают. С увеличением глубины растет содержание рассеянной нефти. Так, на глубине до 1,5 км идет газообразование, в интервале 1,5-8,5 км идет образование жидких углеводородов – микронефти – при температуре от 60 до 160 °С, а на больших глубинах при температуре 150 – - 200 °С образуется метан. По мере уплотнения илов микронефть выжимается в вышележащие песчаники. Это-процесс первичной миграции. Затем под влиянием различных сил микронефть перемещается вверх по наклону. Эта вторичная миграция является причиной формирования самого месторождения.

studfiles.net

Основы химии нефти и газа

Основы химии нефти и газа

2

А.М.Сыркин, Э. М. Мовсумзаде

Уфа 2002

Уфимский государственный нефтяной технический

университет

А.М. Сыркин, Э.М. Мовсумзаде

Основы химии нефти и газа

Учебное пособие

Уфа 2002

УДК 665.6 (075.8)

ББК 6 П 7.43

С 95

Утверждено редакционно-издательским советом УГНТУ

в качестве учебного пособия.

Рецензенты:

Зам. директора института органической химии УНЦ РАН,

доктор химических наук, профессор И.Б. Абдрахманов

Директор ГУП «Нефтехимпереработка» доктор технических наук, профессор Э.Г. Теляшев

Профессор кафедры разработки и эксплуатации нефтегазовых месторождений, доктор технических наук Зейгман Ю.В.

С 95 Сыркин А.М., Мовсумзаде Э.М.

Основы химии нефти и газа: Учеб. пособие. – Уфа: Из-во УГНТУ, 2002. – 109 с.

ISBN5–7831–0495–7

В учебном пособии рассматриваются основные гипотезы происхождения нефти, физико-химические свойства нефтей, их классификации, свойства и реакции основных классов соединений, входящих в состав нефти и газа. Рассматриваются способы переработки нефти и газа для получения различных нефтепродуктов – моторных топлив, смазочных масел и продуктов нефтехимии, пути промышленного использования нефтяных компонентов.

Учебное пособие предназначено для студентов специальности «Нефтегазовое дело».

УДК 665.6 (075.8)

ББК 6 П 7.43

ISBN5–7831–0495–7

© Уфимский государственный нефтяной

технический университет, 2002

© Сыркин А.М., Мовсумзаде Э.М., 2002

Учебное издание

Сыркин Алик Михайлович

Мовсумзаде Эльдар Мирсамедович

Основы химии нефти и газа

Редактор А.А. Синилова

Подписано в печать 30.10.02. Бумага офсетная № 2. Формат 60х84 1/16

Гарнитура «Таймс». Печать трафаретная. Усл.-печ. л. 7,0. Уч.-изд. л. 6,2

Тираж 300 экз. Заказ

Издательство Уфимского государственного нефтяного технического университета

Типография Уфимского государственного нефтяного технического

университета

Адрес издательства и типографии:

450062, Г. Уфа, ул. Космонавтов, 1 Предисловие

Одной из важнейших задач курса химии нефти и газа является изучение состава нефтей и природных газов с помощью физических и физико-химических методов исследования. Химия нефти занимается также изучением физико-химическихъ свойств углеводородов и неуглеводородных компонентов нефти в связи с их строением.

Состав нефтей и газов зависит от геологических и геохимических условий образования и залегания нефтей. Поэтому изучение химического состава нефтей имеет очень большое значение для понимания геохимических процессов превращения нефтей в земной коре. Состав нефтей определяет, в свою очередь, способы их добычи и транспорта, направления и особенности их переработки для получения разнообразных продуктов.

При исследовании нефтей определяют: элементный химический состав, групповой состав, т.е. содержание в нефтях различных классов и групп соединений, индивидуальный химический состав отдельных соединений и изотопный состав нефтей.

  1. Общая характеристика нефти и газа

Нефть представляет собой взаимный сопряжённый раствор углеводородов и гетероатомных органических соединений. Надо подчеркнуть, что нефть – это не смесь веществ, а раствор углеводородов и гетероатомных органических соединений. Это означает, что при изучении нефти к ней надо подходить как к раствору.

Нефть – не просто растворённое вещество в растворителе, а взаимный раствор ближайших гомологов и иных соединений друг в друге. Наконец, сопряжённым раствор назван в том смысле, что, растворяясь друг в друге, ближайшие по строению структуры образуют систему, представляющую нефть в целом.

Если нарушается сопряжённое взаимное растворение ближайших компонентов, то может частично разрушиться и система нефти. Например, если разгонкой убрать из нефти средние фракции, то при соединении головных фракций лёгкого бензина с остаточными тяжёлыми фракциями может и не произойти растворения, а часть смолистых веществ выпадет в осадок – система сопряжённого взаимодействия будет нарушена.

Собственно нефть представляет собой жидкий ископаемый минерал, залегающий в пористых осадочных породах земной коры, в трещинах, расселинах и других пустотах материнских горных пород (гранитов, гнейсов, базальтов и т.п.)

Нефть представляет собой тёмно-коричневую, иногда почти бесцветную, а иногда даже имеющую чёрный цвет жидкость.

Нефть является горючим ископаемым наряду с каменным углем, бурым углем и сланцами, которые получили название каустоболитов. В отличие от других горючих ископаемых нефть состоит из готовой смеси различных углеводородов, тогда как для получения углеводородов из твёрдых горючих ископаемых требуется специальная термическая обработка. Поэтому нефть является ценнейшим сырьём как для получения разнообразных моторных топлив и смазочных масел, так и продуктов нефтехимического синтеза.

studfiles.net


Смотрите также